Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Environ Monit Assess ; 195(6): 630, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37129679

ABSTRACT

The standard method to determine chemical oxygen demand (COD) with K2Cr2O6 uses harmful chemicals, has a long analysis time, and cannot be used for on-site online monitoring. It is therefore necessary to find a fast, cheap, and harmless alternative. The amperometric determination of COD on boron-doped diamond (BDD) electrodes is a promising approach. However, to be a suitable alternative, the electrochemical method must at least be able to determine the COD of water samples independently of the contained substances. Therefore, the current signal as a function of various organic materials was investigated for the first time. It was shown that the height of the signal current depended on the type of organic matter in single-substance solutions and that this substance dependency increases with the amount of COD. Those findings could be explained by the mechanism proposed for this reaction, showing that the selectivity of the reaction depends on the ratio of the concentration of hydroxyl radicals and organic species. We give an outlook on how to improve the method in order to increase the linear working range and avoid signal variance and how to further explain the signal variance.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Biological Oxygen Demand Analysis , Oxidation-Reduction , Boron , Electrodes , Water Pollutants, Chemical/chemistry , Oxygen
2.
Environ Sci Process Impacts ; 22(8): 1678-1687, 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32638776

ABSTRACT

Microplastics are ubiquitous in the environment. Due to still rising global production, the emission of polymers into the environment and the abundance of microplastics have increased accordingly. Due to the long mineralization processes of microplastics, distribution in all compartments can be found. The hydrophobic surfaces of the particles can sorb chemical pollutants, therefore providing a potential pathway to accumulation by organisms within the food web. However, little is known about how long-term aging and degradation processes of microplastics can affect the sorption behaviours of organic pollutants on the particles. In this study, important industrial additives of emerging environmental concern, such as hydrophobic aromatic amines, were studied in relation to their sorption behaviour on high-density polyethylene and low-density polyethylene microplastics. Diphenylamine (log POW (logarithmic octanol-water partition coefficient) = 3.5) showed strong sorption, carbamazepine (log POW = 2.5) showed moderate sorption, and aniline (log POW = 0.9) showed no detectable sorption behaviour. Artificially aged particles exposed to photochemical aging and long-term mechanical treatment in water were compared to pristine microplastics. While mechanically aged microplastics promoted the sorption of aromatic amines, photochemically aged particles showed a decrease in sorption capacity due to changed surface chemistry. Importantly, the sorption capacity increased with increasing salinity, leading to strong implications for ocean systems, as an elevated uptake of pollutants could occur under marine conditions. Moreover, our study demonstrates that the ecotoxicological effects of diphenylamine on the growth of the seaweed Ulva (sea lettuce, Chlorophyta) were reduced in the presence of microplastics. As the plastic particles withdrew enough contaminants from solution, even toxic levels of diphenylamine (c = 10-4 M) became tolerable for the algae. However, the pollutants initially sorbed on the microplastics can be released again at a later point in the ageing process, thus having delayed pollution potential.


Subject(s)
Plastics , Polyethylene , Seaweed , Water Pollutants, Chemical , Adsorption , Amines , Microplastics , Models, Chemical
3.
Ultrason Sonochem ; 39: 741-749, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28733001

ABSTRACT

Micropollutants are becoming an increasing problem for the environment and wastewater treatment. One example is Bisphenol A (BPA), an endocrinic disruptor, which is widely used in plastic production. Due to its endocrine disrupting effects on aquatic (micro-)organisms and its ubiquity, in surface- and wastewater alike, adequate treatment techniques are necessary. In this study, the degradation of BPA by a sonoelectrochemical hybrid system was investigated, using a low frequency (24kHz) ultrasound horn and two boron doped diamond electrodes. It was found that by the combination of the individual processes, i.e. ultrasound and electrochemical oxidation, more than 90% of BPA could be removed within 30min at an initial concentration of 1mgL-1. Moreover, synergistic effects were discovered and a considerable improvement compared to the individual processes could be achieved by using a potential of 5V, whereas synergistic effects were absent at a potential of 10V. This study provides investigation of ultrasound amplitude, potential and electrode positioning on BPA degradation. The reaction was found to follow pseudo first order kinetics with a rate constant of 0.089min-1. Samples were analysed by high pressure liquid chromatography (HPLC) using a diode array detector. Moreover, the presence and distribution of hydroxyl radicals within the reactor was visualized by using sonochemiluminescence.


Subject(s)
Benzhydryl Compounds/chemistry , Endocrine Disruptors/chemistry , Phenols/chemistry , Ultrasonic Waves , Water/chemistry , Electrochemistry , Oxidation-Reduction
4.
J Immunol ; 192(9): 4379-85, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24706726

ABSTRACT

The proinflammatory enzyme caspase-1 plays an important role in the innate immune system and is involved in a variety of inflammatory conditions. Rare naturally occurring human variants of the caspase-1 gene (CASP1) lead to different protein expression and structure and to decreased or absent enzymatic activity. Paradoxically, a significant number of patients with such variants suffer from febrile episodes despite decreased IL-1ß production and secretion. In this study, we investigate how variant (pro)caspase-1 can possibly contribute to inflammation. In a transfection model, such variant procaspase-1 binds receptor interacting protein kinase 2 (RIP2) via Caspase activation and recruitment domain (CARD)/CARD interaction and thereby activates NF-κB, whereas wild-type procaspase-1 reduces intracellular RIP2 levels by enzymatic cleavage and release into the supernatant. We approach the protein interactions by coimmunoprecipitation and confocal microscopy and show that NF-κB activation is inhibited by anti-RIP2-short hairpin RNA and by the expression of a RIP2 CARD-only protein. In conclusion, variant procaspase-1 binds RIP2 and thereby activates NF-κB. This pathway could possibly contribute to proinflammatory signaling.


Subject(s)
Caspase 1/genetics , Fever/genetics , Inflammation/genetics , NF-kappa B/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Blotting, Western , Caspase 1/metabolism , Fever/enzymology , Fluorescent Antibody Technique , Gene Knockdown Techniques , Genetic Variation , HEK293 Cells , Humans , Immunoprecipitation , Inflammation/immunology , Inflammation/metabolism , Signal Transduction/physiology , Transduction, Genetic , Transfection
5.
Ultrason Sonochem ; 21(6): 2020-5, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24768032

ABSTRACT

The sonoelectrochemical degradation of triclosan in aqueous solutions with high-frequency ultrasound (850kHz) and various electrodes was investigated. Diamond coated niobium electrode showed the best results and was used as standard electrode, leading to effective degradation and positive synergistic effect. The influence of different parameters on the degradation degree and energy efficiency were evaluated and favorable reaction conditions were found. It could be shown that 92% of triclosan (1mgL(-1) aqueous solution) was degraded within 15min, following pseudo-first order kinetics.


Subject(s)
Triclosan/chemistry , Ultrasonics , Water Purification/methods , Water/chemistry , Electric Conductivity , Electrochemistry , Electrodes , Hydrogen-Ion Concentration , Temperature , Triclosan/isolation & purification
6.
Ultrason Sonochem ; 20(2): 715-21, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23084791

ABSTRACT

The sonoelectrochemical degradation of phenol in aqueous solutions with stainless steel electrodes and high-frequency ultrasound (850kHz) was investigated. A 60% synergetic effect was obtained in the combined reaction system. High concentration of electrolyte (sodium sulfate) and a high electrical voltage are favorable conditions for the degradation of phenol. A nearly complete degradation of phenol was achieved with 4.26g/L Na(2)SO(4) and 30V electrical voltages at 25°C in 1h. The degradation of phenol follows pseudo-first order kinetics. Considering costs and application, the energy efficiency of the reaction system with different reaction conditions was evaluated.

8.
Water Res ; 46(7): 2469-77, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22365175

ABSTRACT

The antiepileptic drug carbamazepine is one of the most abundant pharmaceuticals in the German aquatic environment. The effect of low carbamazepine concentrations (1-50 µg L(-1)) is discussed controversially, but ecotoxicological studies revealed reproduction toxicity, decreased enzymatic activity and bioaccumulation in different test organisms. Therefore, as a preventive step, an efficient and cost-effective technique for wastewater treatment plants is needed to stop the entry of pharmaceuticals into the aquatic environment. Cavitation, the formation, growth, and subsequent collapse of gas- or vapor-filled bubbles in fluids, was applied to solve this problem. The technique of Hydrodynamic-Acoustic-Cavitation was used showing high synergistic effect. Under optimized conditions carbamazepine (5 µg L(-1)) was transformed by pseudo-first order kinetics to an extent of >96% within 15 min (27% by hydrodynamic cavitation, 33% by acoustic cavitation). A synergistic effect of 63% based on the sum of the single methods was calculated. Carbamazepine concentrations were monitored by a sensitive and selective immunoassay and after 60 min no known metabolites were detectable by LC-MS/MS.


Subject(s)
Carbamazepine/chemistry , Ultrasonics , Water Pollutants, Chemical/chemistry , Water Purification/methods , Chromatography, Liquid , Germany , Hot Temperature , Immunoassay , Kinetics , Molecular Structure , Oxidation-Reduction , Tandem Mass Spectrometry
9.
J Hazard Mater ; 190(1-3): 375-80, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21474241

ABSTRACT

800mL of 1.0mM phenol-containing aqueous solution was circulated at 20°C for 30 min in a suction-reactor, while 3.2 mg min(-1) ozone was introduced into the solution under the suction orifice. The removal rates of phenol vary polynomially with the orifice diameter as well as the suction pressure. The rate constant for the zero-order kinetics achieves the highest value at -0.070 MPa by using 5mm orifice. Although the suction-cavitation alone cannot remove phenol in 30 min, it can considerably enhance the ozonation of phenol. The rate constants for the zero-order kinetics by the simple ozonation and the combined method are 0.018 and 0.028 min(-1), respectively. Furthermore, no ozone was observed in the tail gas during the first 15 min for the ozonation in the suction reactor, and then the concentration of unreacted ozone slowly increased, indicating that the utilization rate of ozone is significantly improved by the suction-cavitation. The increasing input concentration of ozone obviously accelerates the ozonation of phenol, but the total required quantities of ozone are very close by various ozone input concentrations to reach the same degradation rate, indicating the ozonation assisted by the suction-cavitation can be considered as a quantitative reaction.


Subject(s)
Ozone/chemistry , Phenol/chemistry , Kinetics , Pressure , Suction
10.
Ultrason Sonochem ; 18(4): 888-94, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21216173

ABSTRACT

The decomposition of chloroform by the combination of hydrodynamic and acoustic cavitation (Hydrodynamic-Acoustic-Cavitation/HAC) has been investigated. The flow rate and the hole diameter of the orifice plate remarkably affect the conversion of chloroform in the combined system. The conversion increases with increasing fluid velocity without any restriction. With a 2.8mm orifice plate the conversion reaches an optimal value. A synergistic effect has been obtained by the hybrid method of acoustic and hydrodynamic cavitation. The total synergistic effect achieves 17% and 73% per pass, respectively. The analysis of the energy efficiencies shows different results. Due to high optimization potential, this hybrid method can be visualized as a new step for wastewater treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...