Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 134(9)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502193

ABSTRACT

Chimeric antigen receptor (CAR) designs that incorporate pharmacologic control are desirable; however, designs suitable for clinical translation are needed. We designed a fully human, rapamycin-regulated drug product for targeting CD33+ tumors called dimerizaing agent-regulated immunoreceptor complex (DARIC33). T cell products demonstrated target-specific and rapamycin-dependent cytokine release, transcriptional responses, cytotoxicity, and in vivo antileukemic activity in the presence of as little as 1 nM rapamycin. Rapamycin withdrawal paused DARIC33-stimulated T cell effector functions, which were restored following reexposure to rapamycin, demonstrating reversible effector function control. While rapamycin-regulated DARIC33 T cells were highly sensitive to target antigen, CD34+ stem cell colony-forming capacity was not impacted. We benchmarked DARIC33 potency relative to CD19 CAR T cells to estimate a T cell dose for clinical testing. In addition, we integrated in vitro and preclinical in vivo drug concentration thresholds for off-on state transitions, as well as murine and human rapamycin pharmacokinetics, to estimate a clinically applicable rapamycin dosing schedule. A phase I DARIC33 trial has been initiated (PLAT-08, NCT05105152), with initial evidence of rapamycin-regulated T cell activation and antitumor impact. Our findings provide evidence that the DARIC platform exhibits sensitive regulation and potency needed for clinical application to other important immunotherapy targets.


Subject(s)
Leukemia, Myeloid, Acute , Sialic Acid Binding Ig-like Lectin 3 , Sirolimus , T-Lymphocytes , Animals , Female , Humans , Male , Mice , Immunotherapy, Adoptive , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Receptors, Chimeric Antigen/immunology , Sialic Acid Binding Ig-like Lectin 3/immunology , Sialic Acid Binding Ig-like Lectin 3/metabolism , Sirolimus/pharmacology , Sirolimus/administration & dosage , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Xenograft Model Antitumor Assays
2.
Cell Immunol ; 323: 49-58, 2018 01.
Article in English | MEDLINE | ID: mdl-29103587

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells critical in mediating immune suppression in cancer patients. To develop an in vitro assay system that functionally mimics the tumor microenvironment, we cultured human monocytes with conditioned media from several cancer cell lines. Conditioned media from five tumor cell lines induced survival and differentiation of monocytes into cells characteristically similar to macrophages and MDSCs. Notably, media from the 786.O renal cell carcinoma line induced monocytes to acquire a monocytic MDSC phenotype characterized by decreased HLA-DR expression, increased nitric oxide production, enhanced proliferation, and ability to suppress autologous CD3+ T cell proliferation. We further demonstrated that these in vitro MDSCs are phenotypically and functionally similar to patient-derived MDSCs. Inhibitors of STAT3, CK2, and GM-CSF resulted in partial reversal of the MDSC phenotype. MDSCs generated in vitro from 786.O tumor conditioned media represent a platform to identify potential therapeutics that inhibit MDSC activities.


Subject(s)
Carcinoma, Renal Cell/metabolism , Coculture Techniques/methods , Monocytes/drug effects , Myeloid-Derived Suppressor Cells/drug effects , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Culture Media, Conditioned , Humans , Lymphocyte Activation , Models, Biological , Monocytes/cytology , Monocytes/immunology , Myeloid Cells/cytology , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid-Derived Suppressor Cells/cytology , Myeloid-Derived Suppressor Cells/immunology , Phenotype , Tumor Microenvironment/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...