Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 250, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36646682

ABSTRACT

Understanding corrosion mechanisms is of importance for reducing the global cost of corrosion. While the properties of engineering components are considered at a macroscopic scale, corrosion occurs at micro or nano scale and is influenced by local microstructural variations inherent to engineering alloys. However, studying such complex microstructures that involve multiple length scales requires a multitude of advanced experimental procedures. Here, we present a method using correlated electron microscopy techniques over a range of length scales, combined with crystallographic modelling, to provide understanding of the competing mechanisms that control the waterside corrosion of zirconium alloys. We present evidence for a competition between epitaxial strain and growth stress, which depends on the orientation of the substrate leading to local variations in oxide microstructure and thus protectiveness. This leads to the possibility of tailoring substrate crystallographic textures to promote stress driven, well-oriented protective oxides, and so to improving corrosion performance.

2.
J Appl Crystallogr ; 54(Pt 3): 803-821, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34188613

ABSTRACT

This work extends the convolutional multiple whole profile (CMWP) line profile analysis (LPA) procedure to determine the total dislocation density and character of irradiation-induced dislocation loops in commercial polycrystalline Zr specimens. Zr alloys are widely used in the nuclear industry as fuel cladding materials in which irradiation-induced point defects evolve into dislocation loops. LPA has long been established as a powerful tool to determine the density and nature of lattice defects in plastically deformed materials. The CMWP LPA procedure is based on the Krivoglaz-Wilkens theory in which the dislocation structure is characterized by the total dislocation density ρ and the dislocation arrangement parameter M. In commercial Zr alloys irradiation-induced dislocation loops broaden the peak profiles, mainly in the tail regions, and occasionally generate small satellites next to the Bragg peaks. In this work, two challenges in powder diffraction patterns of irradiated Zr alloys are solved: (i) determination of the M values from the long tail regions of peaks has been made unequivocal and (ii) satellites have been fitted separately, using physically well established principles, in order to exclude them from the dislocation determination process. Referring to the theory of heterogeneous dislocation distributions, determination of the total dislocation density from the main peaks free of satellites has been justified. The dislocation loop structure has been characterized by the total dislocation density of loops and the M parameter correlated to the dipole character of dislocation loops. The extended CMWP procedure is applied to determine the total dislocation density, the dipole character of dislocation loops, and the fractions of 〈a〉- and 〈c〉-type loops in proton- or neutron-irradiated polycrystalline Zr alloys used in the nuclear energy industry.

3.
Micron ; 69: 35-42, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25474748

ABSTRACT

Here we report a methodology combining TEM, STEM, Transmission-EBSD and EELS to analyse the structural and chemical properties of the metal-oxide interface of corroded Zr alloys in unprecedented detail. TEM, STEM and diffraction results revealed the complexity of the distribution of suboxide grains at the metal-oxide interface. EELS provided accurate quantitative analysis of the oxygen concentration across the interface, identifying the existence of local regions of stoichiometric ZrO and Zr3O2 with varying thickness. Transmission-EBSD confirmed that the suboxide grains can be indexed with the hexagonal ZrO structure predicted with ab initio by Nicholls et al. (2014). The t-EBSD analysis has also allowed for the mapping of a relatively large region of the metal-oxide interface, revealing the location and size distribution of the suboxide grains.

SELECTION OF CITATIONS
SEARCH DETAIL
...