Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Nat Commun ; 11(1): 5783, 2020 11 13.
Article in English | MEDLINE | ID: mdl-33188197

ABSTRACT

Detecting ligand-protein interactions in living cells is a fundamental challenge in molecular biology and drug research. Proteome-wide profiling of thermal stability as a function of ligand concentration promises to tackle this challenge. However, current data analysis strategies use preset thresholds that can lead to suboptimal sensitivity/specificity tradeoffs and limited comparability across datasets. Here, we present a method based on statistical hypothesis testing on curves, which provides control of the false discovery rate. We apply it to several datasets probing epigenetic drugs and a metabolite. This leads us to detect off-target drug engagement, including the finding that the HDAC8 inhibitor PCI-34051 and its analog BRD-3811 bind to and inhibit leucine aminopeptidase 3. An implementation is available as an R package from Bioconductor ( https://bioconductor.org/packages/TPP2D ). We hope that our method will facilitate prioritizing targets from thermal profiling experiments.


Subject(s)
Computational Biology/methods , Proteome/metabolism , Proteomics , Temperature , Adenosine Triphosphate/metabolism , Databases, Protein , Guanosine Triphosphate/metabolism , Hep G2 Cells , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Humans , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Indoles/chemistry , Indoles/pharmacology , Leucyl Aminopeptidase/metabolism , Ligands , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Protein Binding , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/metabolism
3.
Nat Biotechnol ; 38(3): 303-308, 2020 03.
Article in English | MEDLINE | ID: mdl-31959954

ABSTRACT

Monitoring drug-target interactions with methods such as the cellular thermal-shift assay (CETSA) is well established for simple cell systems but remains challenging in vivo. Here we introduce tissue thermal proteome profiling (tissue-TPP), which measures binding of small-molecule drugs to proteins in tissue samples from drug-treated animals by detecting changes in protein thermal stability using quantitative mass spectrometry. We report organ-specific, proteome-wide thermal stability maps and derive target profiles of the non-covalent histone deacetylase inhibitor panobinostat in rat liver, lung, kidney and spleen and of the B-Raf inhibitor vemurafenib in mouse testis. In addition, we devised blood-CETSA and blood-TPP and applied it to measure target and off-target engagement of panobinostat and the BET family inhibitor JQ1 directly in whole blood. Blood-TPP analysis of panobinostat confirmed its binding to known targets and also revealed thermal stabilization of the zinc-finger transcription factor ZNF512. These methods will help to elucidate the mechanisms of drug action in vivo.


Subject(s)
Blood/metabolism , Proteome/chemistry , Proteome/metabolism , Small Molecule Libraries/administration & dosage , Animals , Azepines/administration & dosage , Azepines/pharmacology , Hep G2 Cells , Humans , Kidney/chemistry , Kidney/metabolism , Liver/chemistry , Liver/metabolism , Lung/chemistry , Lung/metabolism , Male , Mass Spectrometry , Mice , Organ Specificity , Panobinostat/administration & dosage , Panobinostat/pharmacology , Protein Stability , Rats , Small Molecule Libraries/pharmacology , Spleen/chemistry , Spleen/metabolism , Testis/chemistry , Testis/metabolism , Thermodynamics , Triazoles/administration & dosage , Triazoles/pharmacology , Vemurafenib/administration & dosage , Vemurafenib/pharmacology
4.
Mol Cell Proteomics ; 18(12): 2506-2515, 2019 12.
Article in English | MEDLINE | ID: mdl-31582558

ABSTRACT

Detecting the targets of drugs and other molecules in intact cellular contexts is a major objective in drug discovery and in biology more broadly. Thermal proteome profiling (TPP) pursues this aim at proteome-wide scale by inferring target engagement from its effects on temperature-dependent protein denaturation. However, a key challenge of TPP is the statistical analysis of the measured melting curves with controlled false discovery rates at high proteome coverage and detection power. We present nonparametric analysis of response curves (NPARC), a statistical method for TPP based on functional data analysis and nonlinear regression. We evaluate NPARC on five independent TPP data sets and observe that it is able to detect subtle changes in any region of the melting curves, reliably detects the known targets, and outperforms a melting point-centric, single-parameter fitting approach in terms of specificity and sensitivity. NPARC can be combined with established analysis of variance (ANOVA) statistics and enables flexible, factorial experimental designs and replication levels. An open source software implementation of NPARC is provided.


Subject(s)
Pharmaceutical Preparations/metabolism , Proteome , Proteomics/methods , Antineoplastic Agents/metabolism , Cell Line , Dasatinib/metabolism , Datasets as Topic , Drug Stability , Enzyme Inhibitors/metabolism , Humans , K562 Cells , Panobinostat/metabolism , Protein Binding , Sensitivity and Specificity , Software , Statistics, Nonparametric , Staurosporine/metabolism , Temperature
5.
Cell ; 173(1): 260-274.e25, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29551266

ABSTRACT

Protein degradation plays important roles in biological processes and is tightly regulated. Further, targeted proteolysis is an emerging research tool and therapeutic strategy. However, proteome-wide technologies to investigate the causes and consequences of protein degradation in biological systems are lacking. We developed "multiplexed proteome dynamics profiling" (mPDP), a mass-spectrometry-based approach combining dynamic-SILAC labeling with isobaric mass tagging for multiplexed analysis of protein degradation and synthesis. In three proof-of-concept studies, we uncover different responses induced by the bromodomain inhibitor JQ1 versus a JQ1 proteolysis targeting chimera; we elucidate distinct modes of action of estrogen receptor modulators; and we comprehensively classify HSP90 clients based on their requirement for HSP90 constitutively or during synthesis, demonstrating that constitutive HSP90 clients have lower thermal stability than non-clients, have higher affinity for the chaperone, vary between cell types, and change upon external stimuli. These findings highlight the potential of mPDP to identify dynamically controlled degradation mechanisms in cellular systems.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Proteome/analysis , Proteomics/methods , Azepines/chemistry , Azepines/metabolism , Azepines/pharmacology , Cell Line , Chromatography, High Pressure Liquid , Cluster Analysis , Estradiol/pharmacology , Humans , Isotope Labeling , Jurkat Cells , MCF-7 Cells , Neoplasm Proteins/metabolism , Proteins/antagonists & inhibitors , Proteins/metabolism , Proteolysis/drug effects , Receptors, Estrogen/metabolism , Tandem Mass Spectrometry , Triazoles/chemistry , Triazoles/metabolism , Triazoles/pharmacology
6.
Nat Commun ; 9(1): 689, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29449567

ABSTRACT

A better understanding of proteostasis in health and disease requires robust methods to determine protein half-lives. Here we improve the precision and accuracy of peptide ion intensity-based quantification, enabling more accurate protein turnover determination in non-dividing cells by dynamic SILAC-based proteomics. This approach allows exact determination of protein half-lives ranging from 10 to >1000 h. We identified 4000-6000 proteins in several non-dividing cell types, corresponding to 9699 unique protein identifications over the entire data set. We observed similar protein half-lives in B-cells, natural killer cells and monocytes, whereas hepatocytes and mouse embryonic neurons show substantial differences. Our data set extends and statistically validates the previous observation that subunits of protein complexes tend to have coherent turnover. Moreover, analysis of different proteasome and nuclear pore complex assemblies suggests that their turnover rate is architecture dependent. These results illustrate that our approach allows investigating protein turnover and its implications in various cell types.


Subject(s)
Cells/metabolism , Proteins/chemistry , Proteins/metabolism , Animals , Cells/chemistry , Cells, Cultured , Humans , Mass Spectrometry , Mice , Peptides/chemistry , Peptides/metabolism , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Proteomics
7.
Nat Methods ; 12(12): 1129-31, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26524241

ABSTRACT

We extended thermal proteome profiling to detect transmembrane protein-small molecule interactions in cultured human cells. When we assessed the effects of detergents on ATP-binding profiles, we observed shifts in denaturation temperature for ATP-binding transmembrane proteins. We also observed cellular thermal shifts in pervanadate-induced T cell-receptor signaling, delineating the membrane target CD45 and components of the downstream pathway, and with drugs affecting the transmembrane transporters ATP1A1 and MDR1.


Subject(s)
Membrane Proteins/metabolism , Proteome/analysis , Proteomics/methods , Tandem Mass Spectrometry/methods , ATP Binding Cassette Transporter, Subfamily B/metabolism , Caco-2 Cells , Hot Temperature , Humans , Jurkat Cells , K562 Cells , Ligands , Protein Binding , Protein Stability , Proteome/metabolism , Receptors, Antigen, T-Cell/metabolism , Small Molecule Libraries/pharmacology , Sodium-Potassium-Exchanging ATPase/metabolism , Vanadates/pharmacology
8.
Nat Protoc ; 10(10): 1567-93, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26379230

ABSTRACT

The direct detection of drug-protein interactions in living cells is a major challenge in drug discovery research. Recently, we introduced an approach termed thermal proteome profiling (TPP), which enables the monitoring of changes in protein thermal stability across the proteome using quantitative mass spectrometry. We determined the intracellular thermal profiles for up to 7,000 proteins, and by comparing profiles derived from cultured mammalian cells in the presence or absence of a drug we showed that it was possible to identify direct and indirect targets of drugs in living cells in an unbiased manner. Here we demonstrate the complete workflow using the histone deacetylase inhibitor panobinostat. The key to this approach is the use of isobaric tandem mass tag 10-plex (TMT10) reagents to label digested protein samples corresponding to each temperature point in the melting curve so that the samples can be analyzed by multiplexed quantitative mass spectrometry. Important steps in the bioinformatic analysis include data normalization, melting curve fitting and statistical significance determination of compound concentration-dependent changes in protein stability. All analysis tools are made freely available as R and Python packages. The workflow can be completed in 2 weeks.


Subject(s)
Drug Delivery Systems/methods , Mass Spectrometry , Proteome/genetics , Humans , K562 Cells , Protein Array Analysis , Protein Stability , Temperature
9.
Science ; 346(6205): 1255784, 2014 Oct 03.
Article in English | MEDLINE | ID: mdl-25278616

ABSTRACT

The thermal stability of proteins can be used to assess ligand binding in living cells. We have generalized this concept by determining the thermal profiles of more than 7000 proteins in human cells by means of mass spectrometry. Monitoring the effects of small-molecule ligands on the profiles delineated more than 50 targets for the kinase inhibitor staurosporine. We identified the heme biosynthesis enzyme ferrochelatase as a target of kinase inhibitors and suggest that its inhibition causes the phototoxicity observed with vemurafenib and alectinib. Thermal shifts were also observed for downstream effectors of drug treatment. In live cells, dasatinib induced shifts in BCR-ABL pathway proteins, including CRK/CRKL. Thermal proteome profiling provides an unbiased measure of drug-target engagement and facilitates identification of markers for drug efficacy and toxicity.


Subject(s)
Antineoplastic Agents/pharmacology , Proteome/drug effects , Proteomics/methods , Adenosine Triphosphatases/metabolism , Hot Temperature , Humans , K562 Cells , Ligands , Protein Binding , Protein Denaturation , Protein Stability
10.
Mol Cell Proteomics ; 13(1): 348-59, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24176773

ABSTRACT

Liquid chromatography coupled to mass spectrometry (LC-MS) has become a standard technology in metabolomics. In particular, label-free quantification based on LC-MS is easily amenable to large-scale studies and thus well suited to clinical metabolomics. Large-scale studies, however, require automated processing of the large and complex LC-MS datasets. We present a novel algorithm for the detection of mass traces and their aggregation into features (i.e. all signals caused by the same analyte species) that is computationally efficient and sensitive and that leads to reproducible quantification results. The algorithm is based on a sensitive detection of mass traces, which are then assembled into features based on mass-to-charge spacing, co-elution information, and a support vector machine-based classifier able to identify potential metabolite isotope patterns. The algorithm is not limited to metabolites but is applicable to a wide range of small molecules (e.g. lipidomics, peptidomics), as well as to other separation technologies. We assessed the algorithm's robustness with regard to varying noise levels on synthetic data and then validated the approach on experimental data investigating human plasma samples. We obtained excellent results in a fully automated data-processing pipeline with respect to both accuracy and reproducibility. Relative to state-of-the art algorithms, ours demonstrated increased precision and recall of the method. The algorithm is available as part of the open-source software package OpenMS and runs on all major operating systems.


Subject(s)
Chromatography, Liquid/methods , Mass Spectrometry/methods , Metabolomics , Peptides/metabolism , Algorithms , Humans , Peptides/isolation & purification , Software
11.
Diabetes Care ; 36(8): 2331-8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23514731

ABSTRACT

OBJECTIVE: Nonalcoholic fatty liver (NAFL) is thought to contribute to insulin resistance and its metabolic complications. However, some individuals with NAFL remain insulin sensitive. Mechanisms involved in the susceptibility to develop insulin resistance in humans with NAFL are largely unknown. We investigated circulating markers and mechanisms of a metabolically benign and malignant NAFL by applying a metabolomic approach. RESEARCH DESIGN AND METHODS: A total of 265 metabolites were analyzed before and after a 9-month lifestyle intervention in plasma from 20 insulin-sensitive and 20 insulin-resistant subjects with NAFL. The relevant plasma metabolites were then tested for relationships with insulin sensitivity in 17 subjects without NAFL and in plasma from 29 subjects with liver tissue samples. RESULTS: The best separation of the insulin-sensitive from the insulin-resistant NAFL group was achieved by a metabolite pattern including the branched-chain amino acids leucine and isoleucine, ornithine, the acylcarnitines C3:0-, C16:0-, and C18:0-carnitine, and lysophosphatidylcholine (lyso-PC) C16:0 (area under the ROC curve, 0.77 [P = 0.00023] at baseline and 0.80 [P = 0.000019] at follow-up). Among the individual metabolites, predominantly higher levels of lyso-PC C16:0, both at baseline (P = 0.0039) and at follow-up (P = 0.001), were found in the insulin-sensitive compared with the insulin-resistant subjects. In the non-NAFL groups, no differences in lyso-PC C16:0 levels were found between the insulin-sensitive and insulin-resistant subjects, and these relationships were replicated in plasma from subjects with liver tissue samples. CONCLUSIONS: From a plasma metabolomic pattern, particularly lyso-PCs are able to separate metabolically benign from malignant NAFL in humans and may highlight important pathways in the pathogenesis of fatty liver-induced insulin resistance.


Subject(s)
Biomarkers/blood , Fatty Liver/blood , Insulin Resistance , Lysophosphatidylcholines/blood , Adult , Fatty Liver/physiopathology , Female , Humans , Liver/metabolism , Male , Metabolomics , Middle Aged , Non-alcoholic Fatty Liver Disease
12.
Clin Chem ; 59(5): 833-45, 2013 May.
Article in English | MEDLINE | ID: mdl-23386698

ABSTRACT

BACKGROUND: Metabolomics is a powerful tool that is increasingly used in clinical research. Although excellent sample quality is essential, it can easily be compromised by undetected preanalytical errors. We set out to identify critical preanalytical steps and biomarkers that reflect preanalytical inaccuracies. METHODS: We systematically investigated the effects of preanalytical variables (blood collection tubes, hemolysis, temperature and time before further processing, and number of freeze-thaw cycles) on metabolomics studies of clinical blood and plasma samples using a nontargeted LC-MS approach. RESULTS: Serum and heparinate blood collection tubes led to chemical noise in the mass spectra. Distinct, significant changes of 64 features in the EDTA-plasma metabolome were detected when blood was exposed to room temperature for 2, 4, 8, and 24 h. The resulting pattern was characterized by increases in hypoxanthine and sphingosine 1-phosphate (800% and 380%, respectively, at 2 h). In contrast, the plasma metabolome was stable for up to 4 h when EDTA blood samples were immediately placed in iced water. Hemolysis also caused numerous changes in the metabolic profile. Unexpectedly, up to 4 freeze-thaw cycles only slightly changed the EDTA-plasma metabolome, but increased the individual variability. CONCLUSIONS: Nontargeted metabolomics investigations led to the following recommendations for the preanalytical phase: test the blood collection tubes, avoid hemolysis, place whole blood immediately in ice water, use EDTA plasma, and preferably use nonrefrozen biobank samples. To exclude outliers due to preanalytical errors, inspect the biomarker signal intensities reflecting systematic as well as accidental and preanalytical inaccuracies before processing the bioinformatics data.


Subject(s)
Blood Chemical Analysis/methods , Metabolomics/methods , Specimen Handling/standards , Blood Chemical Analysis/standards , Chromatography, Liquid , Hemolysis , Humans , Metabolome , Metabolomics/standards , Principal Component Analysis , Quality Control , Specimen Handling/methods , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...