Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(6): e0218986, 2019.
Article in English | MEDLINE | ID: mdl-31251767

ABSTRACT

In unilateral ureteral obstruction (UUO), both oxidative stress and mitochondrial dysfunction are related to cell death. The aim of this study has been to characterize profiles of enzyme antioxidant activities and mitochondrial functioning of the contralateral (CL) compared to UUO and Sham (false-operated) kidneys of Balb/c mice. Kidneys were resected 14 days after obstruction for immunohistochemical and cortical mitochondrial functioning assays. Antioxidant enzymes activities were investigated in mitochondria and cytosol. Oxygen consumption (QO2) and formation of O2 reactive species (ROS) were assessed with pyruvate plus malate or succinate as the respiratory substrates. QO2 decreased in CL and UUO in all states using substrates for complex II, whereas it was affected only in UUO when substrates for complex I were used. Progressive decrease in mitochondrial ROS formation-in the forward and reverse pathway at complex I-correlates well with the inhibition of QO2 and, therefore, with decreased electron transfer at the level of complexes upstream of cytochrome c oxidase. CL and UUO transmembrane potential responses to ADP were impaired with succinate. Intense Ca2+-induced swelling was elicited in CL and UUO mitochondria. Important and selective differences exist in CL antioxidant enzymes with respect to either Sham or UUO kidneys: CL kidneys had increased mitochondrial glutathione peroxidase and cytosolic catalase activities, indicative of compensatory responses in the face of an early altered ROS homeostasis (as detected by 4-hydroxynonenal), and of a significant tendency to apoptosis. In CL and UUO, upregulation of nuclear (erythroid-derived 2)-like 2 transcription factor (Nrf2), as well as of cytoplasmic and nuclear Kelch-like ECH-associated protein 1 (Keap1) in opposition to decreased heme oxygenase-1 (HO-1), suggest impairment of the Nrf2/Keap1/HO-1 system. It is concluded that chronic obstruction impairs mitochondrial function in CL and UUO, preferentially affecting complex II.


Subject(s)
Kidney/cytology , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Ureteral Obstruction/surgery , Animals , Calcium Signaling , Catalase/metabolism , Disease Models, Animal , Glutathione Peroxidase/metabolism , Homeostasis , Kidney/metabolism , Kidney/surgery , Male , Mice , Oxidation-Reduction , Up-Regulation , Ureteral Obstruction/etiology , Ureteral Obstruction/metabolism
2.
PLoS One ; 9(9): e102699, 2014.
Article in English | MEDLINE | ID: mdl-25225984

ABSTRACT

The abuse of anabolic androgenic steroids (AAS) may cause side effects in several tissues. Oxidative stress is linked to the pathophysiology of most of these alterations, being involved in fibrosis, cellular proliferation, tumorigenesis, amongst others. Thus, the aim of this study was to determine the impact of supraphysiological doses of nandrolone decanoate (DECA) on the redox balance of liver, heart and kidney. Wistar male rats were treated with intramuscular injections of vehicle or DECA (1 mg.100 g(-1) body weight) once a week for 8 weeks. The activity and mRNA levels of NADPH Oxidase (NOX), and the activity of catalase, glutathione peroxidase (GPx) and total superoxide dismutase (SOD), as well as the reduced thiol and carbonyl residue proteins, were measured in liver, heart and kidney. DECA treatment increased NOX activity in heart and liver, but NOX2 mRNA levels were only increased in heart. Liver catalase and SOD activities were decreased in the DECA-treated group, but only catalase activity was decreased in the kidney. No differences were detected in GPx activity. Thiol residues were decreased in the liver and kidney of treated animals in comparison to the control group, while carbonyl residues were increased in the kidney after the treatment. Taken together, our results show that chronically administered DECA is able to disrupt the cellular redox balance, leading to an oxidative stress state.


Subject(s)
Anabolic Agents/pharmacology , Homeostasis/drug effects , Homeostasis/physiology , Nandrolone/analogs & derivatives , Oxidation-Reduction/drug effects , Anabolic Agents/administration & dosage , Animals , Antioxidants/metabolism , Biomarkers , Enzyme Activation , Gene Expression , Heart/drug effects , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Male , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Nandrolone/administration & dosage , Nandrolone/pharmacology , Nandrolone Decanoate , Oxidative Stress/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Transaminases/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...