Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Cell ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38942015

ABSTRACT

Cellular homeostasis is intricately influenced by stimuli from the microenvironment, including signaling molecules, metabolites, and pathogens. Functioning as a signaling hub within the cell, mitochondria integrate information from various intracellular compartments to regulate cellular signaling and metabolism. Multiple studies have shown that mitochondria may respond to various extracellular signaling events. However, it is less clear how changes in the extracellular matrix (ECM) can impact mitochondrial homeostasis to regulate animal physiology. We find that ECM remodeling alters mitochondrial homeostasis in an evolutionarily conserved manner. Mechanistically, ECM remodeling triggers a TGF-ß response to induce mitochondrial fission and the unfolded protein response of the mitochondria (UPRMT). At the organismal level, ECM remodeling promotes defense of animals against pathogens through enhanced mitochondrial stress responses. We postulate that this ECM-mitochondria crosstalk represents an ancient immune pathway, which detects infection- or mechanical-stress-induced ECM damage, thereby initiating adaptive mitochondria-based immune and metabolic responses.

2.
Sci Adv ; 8(49): eabq3970, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36490338

ABSTRACT

Aging organisms lose the ability to induce stress responses, becoming vulnerable to protein toxicity and tissue damage. Neurons can signal to peripheral tissues to induce protective organelle-specific stress responses. Recent work shows that glia can independently induce such responses. Here, we show that overexpression of heat shock factor 1 (hsf-1) in the four astrocyte-like cephalic sheath cells of Caenorhabditis elegans induces a non-cell-autonomous cytosolic unfolded protein response, also known as the heat shock response (HSR). These animals have increased lifespan and heat stress resistance and decreased protein aggregation. Glial HSR regulation is independent of canonical thermosensory circuitry and known neurotransmitters but requires the small clear vesicle release protein UNC-13. HSF-1 and the FOXO transcription factor DAF-16 are partially required in peripheral tissues for non-cell-autonomous HSR, longevity, and thermotolerance. Cephalic sheath glial hsf-1 overexpression also leads to pathogen resistance, suggesting a role for this signaling pathway in immune function.

3.
iScience ; 25(7): 104571, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35784796

ABSTRACT

The deleterious potential to generate oxidative stress is a fundamental challenge to metabolism. The oxidative stress response transcription factor, SKN-1/NRF2, can sense and respond to changes in metabolic state, although the mechanism and consequences of this remain unknown. Here, we performed a genetic screen in C. elegans targeting amino acid catabolism and identified multiple metabolic pathways as regulators of SKN-1 activity. We found that knockdown of the conserved amidohydrolase T12A2.1/amdh-1 activates a unique subset of SKN-1 regulated genes. Interestingly, this transcriptional program is independent of canonical P38-MAPK signaling components but requires ELT-3, NHR-49 and MDT-15. This activation of SKN-1 is dependent on upstream histidine catabolism genes HALY-1 and Y51H4A.7/UROC-1 and may occur through accumulation of a catabolite, 4-imidazolone-5-propanoate. Activating SKN-1 results in increased oxidative stress resistance but decreased survival to heat stress. Together, our data suggest that SKN-1 acts downstream of key catabolic pathways to influence physiology and stress resistance.

4.
MicroPubl Biol ; 20222022.
Article in English | MEDLINE | ID: mdl-35668715

ABSTRACT

Hereditary Tyrosinemia Type 1 (HT1) is a rare genetic disease that results from mutations of the tyrosine catabolism enzyme fumarylacetoacetate hydrolase (FAH) for which there is currently no cure. HT1 is successfully modeled in the nematode C. elegans , via mutations in the fumarylacetoacetate hydrolase ( fah-1 ) resulting in abnormalities in body size, intestinal degradation, and activation of SKN-1/NRF2. Previous work has shown that body size and intestinal phenotypes in this model may occur through the buildup of toxic tyrosine catabolites, although the mechanism by which SKN-1 becomes activated remains elusive. Here, we confirm previous findings that phenotypes in the HT1 model are dependent on upstream enzymes in this pathway. Notably, we find that fah-1 mediated SKN-1 activation is dependent on the upstream enzymes in this pathway, suggesting that an accumulation of tyrosine catabolites influence SKN-1 activity. Finally, we report that SKN-1 responds to knockdown of multiple tyrosine catabolism enzymes, suggesting that multiple catabolites act as signaling inputs to SKN-1 and that C. elegans are an appropriate model to study diseases related to tyrosine catabolism.

5.
FEBS J ; 289(11): 3101-3114, 2022 06.
Article in English | MEDLINE | ID: mdl-34914197

ABSTRACT

DNA damage activates a robust transcriptional stress response, but much less is known about how DNA damage impacts translation. The advent of genome editing with Cas9 has intensified interest in understanding cellular responses to DNA damage. Here, we find that DNA double-strand breaks (DSBs), including those induced by Cas9, trigger the loss of ribosomal protein RPS27A from ribosomes via p53-independent proteasomal degradation. Comparisons of Cas9 and dCas9 ribosome profiling and mRNA-seq experiments reveal a global translational response to DSBs that precedes changes in transcript abundance. Our results demonstrate that even a single DSB can lead to altered translational output and ribosome remodeling, suggesting caution in interpreting cellular phenotypes measured immediately after genome editing.


Subject(s)
DNA Breaks, Double-Stranded , Gene Editing , CRISPR-Cas Systems , DNA Damage/genetics , DNA Repair , Gene Editing/methods , Ribosomal Proteins/genetics
6.
Sci Adv ; 7(44): eabj6818, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34714674

ABSTRACT

The dysfunction of mitochondria is associated with the physiological consequences of aging and many age-related diseases. Therefore, critical quality control mechanisms exist to protect mitochondrial functions, including the unfolded protein response of the mitochondria (UPRMT). However, it is still unclear how UPRMT is regulated in mammals with mechanistic discrepancies between previous studies. Here, we reasoned that a study of conserved mechanisms could provide a uniquely powerful way to reveal previously uncharacterized components of the mammalian UPRMT. We performed cross-species comparison of genetic requirements for survival under­and in response to­mitochondrial stress between karyotypically normal human stem cells and the nematode Caenorhabditis elegans. We identified a role for EPS-8/EPS8 (epidermal growth factor receptor pathway substrate 8), a signaling protein adaptor, in general mitochondrial homeostasis and UPRMT regulation through integrin-mediated remodeling of the actin cytoskeleton. This study also highlights the use of cross-species comparisons in genetic screens to interrogate cellular pathways.

7.
PLoS One ; 16(5): e0251296, 2021.
Article in English | MEDLINE | ID: mdl-34038425

ABSTRACT

Regular surveillance testing of asymptomatic individuals for SARS-CoV-2 has been center to SARS-CoV-2 outbreak prevention on college and university campuses. Here we describe the voluntary saliva testing program instituted at the University of California, Berkeley during an early period of the SARS-CoV-2 pandemic in 2020. The program was administered as a research study ahead of clinical implementation, enabling us to launch surveillance testing while continuing to optimize the assay. Results of both the testing protocol itself and the study participants' experience show how the program succeeded in providing routine, robust testing capable of contributing to outbreak prevention within a campus community and offer strategies for encouraging participation and a sense of civic responsibility.


Subject(s)
COVID-19/diagnosis , Program Evaluation , Saliva/virology , Adult , Aged , COVID-19/epidemiology , COVID-19/virology , COVID-19 Testing/methods , Female , Humans , Male , Middle Aged , RNA, Viral/metabolism , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Social Norms , Surveys and Questionnaires , Universities , Young Adult
8.
Cell Metab ; 33(7): 1322-1341.e13, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34019840

ABSTRACT

Mitochondria control eukaryotic cell fate by producing the energy needed to support life and the signals required to execute programed cell death. The biochemical milieu is known to affect mitochondrial function and contribute to the dysfunctional mitochondrial phenotypes implicated in cancer and the morbidities of aging. However, the physical characteristics of the extracellular matrix are also altered in cancerous and aging tissues. Here, we demonstrate that cells sense the physical properties of the extracellular matrix and activate a mitochondrial stress response that adaptively tunes mitochondrial function via solute carrier family 9 member A1-dependent ion exchange and heat shock factor 1-dependent transcription. Overall, our data indicate that adhesion-mediated mechanosignaling may play an unappreciated role in the altered mitochondrial functions observed in aging and cancer.


Subject(s)
Cell Adhesion/physiology , Mechanotransduction, Cellular/physiology , Mitochondrial Dynamics/physiology , Adult , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Cell Respiration , Cells, Cultured , Extracellular Matrix/metabolism , Female , HEK293 Cells , Humans , Hyperglycemia/metabolism , Hyperglycemia/pathology , Hyperglycemia/physiopathology , Integrins/physiology , Ion Exchange , Mice , Microscopy, Confocal , Middle Aged , Mitochondria/metabolism , Mitochondria/physiology , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Signal Transduction/physiology , Sodium-Hydrogen Exchanger 1/physiology , Time-Lapse Imaging
9.
Cell ; 184(13): 3426-3437.e8, 2021 06 24.
Article in English | MEDLINE | ID: mdl-33991487

ABSTRACT

We identified an emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant by viral whole-genome sequencing of 2,172 nasal/nasopharyngeal swab samples from 44 counties in California, a state in the western United States. Named B.1.427/B.1.429 to denote its two lineages, the variant emerged in May 2020 and increased from 0% to >50% of sequenced cases from September 2020 to January 2021, showing 18.6%-24% increased transmissibility relative to wild-type circulating strains. The variant carries three mutations in the spike protein, including an L452R substitution. We found 2-fold increased B.1.427/B.1.429 viral shedding in vivo and increased L452R pseudovirus infection of cell cultures and lung organoids, albeit decreased relative to pseudoviruses carrying the N501Y mutation common to variants B.1.1.7, B.1.351, and P.1. Antibody neutralization assays revealed 4.0- to 6.7-fold and 2.0-fold decreases in neutralizing titers from convalescent patients and vaccine recipients, respectively. The increased prevalence of a more transmissible variant in California exhibiting decreased antibody neutralization warrants further investigation.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/transmission , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Humans , Mutation/genetics , Whole Genome Sequencing/methods
10.
medRxiv ; 2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33758899

ABSTRACT

We identified a novel SARS-CoV-2 variant by viral whole-genome sequencing of 2,172 nasal/nasopharyngeal swab samples from 44 counties in California. Named B.1.427/B.1.429 to denote its 2 lineages, the variant emerged around May 2020 and increased from 0% to >50% of sequenced cases from September 1, 2020 to January 29, 2021, exhibiting an 18.6-24% increase in transmissibility relative to wild-type circulating strains. The variant carries 3 mutations in the spike protein, including an L452R substitution. Our analyses revealed 2-fold increased B.1.427/B.1.429 viral shedding in vivo and increased L452R pseudovirus infection of cell cultures and lung organoids, albeit decreased relative to pseudoviruses carrying the N501Y mutation found in the B.1.1.7, B.1.351, and P.1 variants. Antibody neutralization assays showed 4.0 to 6.7-fold and 2.0-fold decreases in neutralizing titers from convalescent patients and vaccine recipients, respectively. The increased prevalence of a more transmissible variant in California associated with decreased antibody neutralization warrants further investigation.

11.
Sci Adv ; 6(26): eaaz9805, 2020 06.
Article in English | MEDLINE | ID: mdl-32637599

ABSTRACT

Recent work has highlighted the fact that lysosomes are a critical signaling hub of metabolic processes, providing fundamental building blocks crucial for anabolic functions. How lysosomal functions affect other cellular compartments is not fully understood. Here, we find that lysosomal recycling of the amino acids lysine and arginine is essential for proper ER quality control through the UPRER. Specifically, loss of the lysine and arginine amino acid transporter LAAT-1 results in increased sensitivity to proteotoxic stress in the ER and decreased animal physiology. We find that these LAAT-1-dependent effects are linked to glycine metabolism and transport and that the loss of function of the glycine transporter SKAT-1 also increases sensitivity to ER stress. Direct lysine and arginine supplementation, or glycine supplementation alone, can ameliorate increased ER stress sensitivity found in laat-1 mutants. These data implicate a crucial role in recycling lysine, arginine, and glycine in communication between the lysosome and ER.

12.
J Vis Exp ; (159)2020 05 21.
Article in English | MEDLINE | ID: mdl-32510480

ABSTRACT

Organisms are often exposed to fluctuating environments and changes in intracellular homeostasis, which can have detrimental effects on their proteome and physiology. Thus, organisms have evolved targeted and specific stress responses dedicated to repair damage and maintain homeostasis. These mechanisms include the unfolded protein response of the endoplasmic reticulum (UPRER), the unfolded protein response of the mitochondria (UPRMT), the heat shock response (HSR), and the oxidative stress response (OxSR). The protocols presented here describe methods to detect and characterize the activation of these pathways and their physiological consequences in the nematode, C. elegans. First, the use of pathway-specific fluorescent transcriptional reporters is described for rapid cellular characterization, drug screening, or large-scale genetic screening (e.g., RNAi or mutant libraries). In addition, complementary, robust physiological assays are described, which can be used to directly assess sensitivity of animals to specific stressors, serving as functional validation of the transcriptional reporters. Together, these methods allow for rapid characterization of the cellular and physiological effects of internal and external proteotoxic perturbations.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/physiology , Green Fluorescent Proteins/metabolism , Heat-Shock Response , Oxidative Stress , Stress, Physiological , Unfolded Protein Response , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Endoplasmic Reticulum/metabolism , Green Fluorescent Proteins/genetics , Homeostasis , Mitochondria/metabolism
13.
Sci Adv ; 6(1): eaaz1441, 2020 01.
Article in English | MEDLINE | ID: mdl-31911951

ABSTRACT

Longevity is dictated by a combination of environmental and genetic factors. One of the key mechanisms to regulate life-span extension is the induction of protein chaperones for protein homeostasis. Ectopic activation of the unfolded protein response of the endoplasmic reticulum (UPRER) specifically in neurons is sufficient to enhance organismal stress resistance and extend life span. Here, we find that this activation not only promotes chaperones but also facilitates ER restructuring and ER function. This restructuring is concomitant with lipid depletion through lipophagy. Activation of lipophagy is distinct from chaperone induction and is required for the life-span extension found in this paradigm. Last, we find that overexpression of the lipophagy component, ehbp-1, is sufficient to deplete lipids, remodel ER, and promote life span. Therefore, UPR induction in neurons triggers two distinct programs in the periphery: the proteostasis arm through protein chaperones and metabolic changes through lipid depletion mediated by EH domain binding protein 1 (EHBP-1).


Subject(s)
Autophagy/genetics , Caenorhabditis elegans Proteins/genetics , Longevity/genetics , Unfolded Protein Response/genetics , Vesicular Transport Proteins/genetics , Animals , Caenorhabditis elegans , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum Stress/genetics , Humans , Lipids/genetics , Molecular Chaperones/genetics , Neurons/metabolism , Signal Transduction/genetics
14.
Cell ; 179(6): 1306-1318.e18, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31761535

ABSTRACT

Cells have evolved complex mechanisms to maintain protein homeostasis, such as the UPRER, which are strongly associated with several diseases and the aging process. We performed a whole-genome CRISPR-based knockout (KO) screen to identify genes important for cells to survive ER-based protein misfolding stress. We identified the cell-surface hyaluronidase (HAase), Transmembrane Protein 2 (TMEM2), as a potent modulator of ER stress resistance. The breakdown of the glycosaminoglycan, hyaluronan (HA), by TMEM2 within the extracellular matrix (ECM) altered ER stress resistance independent of canonical UPRER pathways but dependent upon the cell-surface receptor, CD44, a putative HA receptor, and the MAPK cell-signaling components, ERK and p38. Last, and most surprisingly, ectopic expression of human TMEM2 in C. elegans protected animals from ER stress and increased both longevity and pathogen resistance independent of canonical UPRER activation but dependent on the ERK ortholog mpk-1 and the p38 ortholog pmk-1.


Subject(s)
Caenorhabditis elegans/physiology , Endoplasmic Reticulum/metabolism , Hyaluronoglucosaminidase/metabolism , Longevity/physiology , Membrane Proteins/metabolism , Unfolded Protein Response , Animals , Caenorhabditis elegans/immunology , Cell Line , Cell Proliferation , Disease Resistance , Endoplasmic Reticulum Stress , Fibroblasts/metabolism , Humans , Immunity, Innate , Models, Biological , Molecular Weight , Signal Transduction
15.
Dev Cell ; 51(2): 192-207.e6, 2019 10 21.
Article in English | MEDLINE | ID: mdl-31495695

ABSTRACT

Mechanisms establishing higher-order chromosome structures and their roles in gene regulation are elusive. We analyzed chromosome architecture during nematode X chromosome dosage compensation, which represses transcription via a dosage-compensation condensin complex (DCC) that binds hermaphrodite Xs and establishes megabase-sized topologically associating domains (TADs). We show that DCC binding at high-occupancy sites (rex sites) defines eight TAD boundaries. Single rex deletions disrupted boundaries, and single insertions created new boundaries, demonstrating that a rex site is necessary and sufficient to define DCC-dependent boundary locations. Deleting eight rex sites (8rexΔ) recapitulated TAD structure of DCC mutants, permitting analysis when chromosome-wide domain architecture was disrupted but most DCC binding remained. 8rexΔ animals exhibited no changes in X expression and lacked dosage-compensation mutant phenotypes. Hence, TAD boundaries are neither the cause nor the consequence of DCC-mediated gene repression. Abrogating TAD structure did, however, reduce thermotolerance, accelerate aging, and shorten lifespan, implicating chromosome architecture in stress responses and aging.


Subject(s)
Dosage Compensation, Genetic/genetics , Gene Expression Regulation/genetics , Longevity/physiology , X Chromosome/genetics , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism
16.
Cell Metab ; 29(5): 1015-1017, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31067444

ABSTRACT

Mitochondria are organelles descended from an endosymbiosed bacterium, and many bacterial toxins impair mitochondria, likely as an echo of ancient bacterial warfare. However, the signal transduction pathways that translate mitochondrial dysfunction into a transcriptional program for detoxification have not been well understood. In this issue of Cell Metabolism, Mao et al. (2019) provide insight into how mitochondrial perturbations can activate both the mitochondrial unfolded protein response (UPRmito) and detoxification response and, importantly, how these responses differentially affect organismal physiology under normal conditions or with pathogenic challenges.


Subject(s)
Biological Warfare , Caenorhabditis elegans , Animals , Mitochondria , Signal Transduction , Unfolded Protein Response
17.
PLoS Genet ; 15(3): e1008029, 2019 03.
Article in English | MEDLINE | ID: mdl-30917129

ABSTRACT

Nematode-trapping fungi (NTF) are a large and diverse group of fungi, which may switch from a saprotrophic to a predatory lifestyle if nematodes are present. Different fungi have developed different trapping devices, ranging from adhesive cells to constricting rings. After trapping, fungal hyphae penetrate the worm, secrete lytic enzymes and form a hyphal network inside the body. We sequenced the genome of Duddingtonia flagrans, a biotechnologically important NTF used to control nematode populations in fields. The 36.64 Mb genome encodes 9,927 putative proteins, among which are more than 638 predicted secreted proteins. Most secreted proteins are lytic enzymes, but more than 200 were classified as small secreted proteins (< 300 amino acids). 117 putative effector proteins were predicted, suggesting interkingdom communication during the colonization. As a first step to analyze the function of such proteins or other phenomena at the molecular level, we developed a transformation system, established the fluorescent proteins GFP and mCherry, adapted an assay to monitor protein secretion, and established gene-deletion protocols using homologous recombination or CRISPR/Cas9. One putative virulence effector protein, PefB, was transcriptionally induced during the interaction. We show that the mature protein is able to be imported into nuclei in Caenorhabditis elegans cells. In addition, we studied trap formation and show that cell-to-cell communication is required for ring closure. The availability of the genome sequence and the establishment of many molecular tools will open new avenues to studying this biotechnologically relevant nematode-trapping fungus.


Subject(s)
Caenorhabditis elegans/microbiology , Duddingtonia/genetics , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/physiology , Cell Communication , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/physiology , Intercellular Signaling Peptides and Proteins , Nematoda/metabolism , Nematoda/microbiology , Nematoda/physiology , Virulence
18.
Mol Biol Cell ; 29(21): 2522-2527, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30133343

ABSTRACT

There are many studies suggesting an age-associated decline in the actin cytoskeleton, and this has been adopted as common knowledge in the field of aging biology. However, a direct identification of this phenomenon in aging multicellular organisms has not been performed. Here, we express LifeAct::mRuby in a tissue-specific manner to interrogate cytoskeletal organization as a function of age. We show for the first time in Caenorhabditis elegans that the organization and morphology of the actin cytoskeleton deteriorate at advanced age in the muscles, intestine, and hypodermis. Moreover, hsf-1 is essential for regulating cytoskeletal integrity during aging, so that knockdown of hsf-1 results in premature aging of actin and its overexpression protects actin cytoskeletal integrity in the muscles, the intestine, and the hypodermis. Finally, hsf-1 overexpression in neurons alone is sufficient to protect cytoskeletal integrity in nonneuronal cells.


Subject(s)
Actin Cytoskeleton/metabolism , Aging/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Transcription Factors/metabolism , Actins/metabolism , Animals , Homeostasis , Longevity , Neurons/metabolism , Organ Specificity
19.
Dev Cell ; 44(2): 139-163, 2018 Jan 22.
Article in English | MEDLINE | ID: mdl-29401418

ABSTRACT

There exists a phenomenon in aging research whereby early life stress can have positive impacts on longevity. The mechanisms underlying these observations suggest a robust, long-lasting induction of cellular defense mechanisms. These include the various unfolded protein responses of the endoplasmic reticulum (ER), cytosol, and mitochondria. Indeed, ectopic induction of these pathways, in the absence of stress, is sufficient to increase lifespan in organisms as diverse as yeast, worms, and flies. Here, we provide an overview of the protein quality control mechanisms that operate in the cytosol, mitochondria, and ER and discuss how they affect cellular health and viability during stress and aging.


Subject(s)
Aging/physiology , Stress, Physiological/physiology , Unfolded Protein Response , Animals , Autophagy , Cytoplasm/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum-Associated Degradation , Homeostasis , Mitochondria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...