Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Nat Commun ; 11(1): 5976, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33239696

ABSTRACT

Preeclampsia is a serious complication of pregnancy, affecting both maternal and fetal health. In genome-wide association meta-analysis of European and Central Asian mothers, we identify sequence variants that associate with preeclampsia in the maternal genome at ZNF831/20q13 and FTO/16q12. These are previously established variants for blood pressure (BP) and the FTO variant has also been associated with body mass index (BMI). Further analysis of BP variants establishes that variants at MECOM/3q26, FGF5/4q21 and SH2B3/12q24 also associate with preeclampsia through the maternal genome. We further show that a polygenic risk score for hypertension associates with preeclampsia. However, comparison with gestational hypertension indicates that additional factors modify the risk of preeclampsia.


Subject(s)
Genetic Predisposition to Disease , Hypertension, Pregnancy-Induced/genetics , Multifactorial Inheritance , Pre-Eclampsia/genetics , Adaptor Proteins, Signal Transducing/genetics , Adult , Aged , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Asia, Central/epidemiology , Blood Pressure/genetics , Case-Control Studies , Datasets as Topic , Europe/epidemiology , Female , Fibroblast Growth Factor 5/genetics , Genetic Loci/genetics , Genome-Wide Association Study , Humans , Hypertension, Pregnancy-Induced/epidemiology , MDS1 and EVI1 Complex Locus Protein/genetics , Middle Aged , Pre-Eclampsia/epidemiology , Pregnancy , Prospective Studies
3.
Nat Commun ; 9(1): 4285, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30327483

ABSTRACT

Phenome-wide association studies (PheWAS) have been proposed as a possible aid in drug development through elucidating mechanisms of action, identifying alternative indications, or predicting adverse drug events (ADEs). Here, we select 25 single nucleotide polymorphisms (SNPs) linked through genome-wide association studies (GWAS) to 19 candidate drug targets for common disease indications. We interrogate these SNPs by PheWAS in four large cohorts with extensive health information (23andMe, UK Biobank, FINRISK, CHOP) for association with 1683 binary endpoints in up to 697,815 individuals and conduct meta-analyses for 145 mapped disease endpoints. Our analyses replicate 75% of known GWAS associations (P < 0.05) and identify nine study-wide significant novel associations (of 71 with FDR < 0.1). We describe associations that may predict ADEs, e.g., acne, high cholesterol, gout, and gallstones with rs738409 (p.I148M) in PNPLA3 and asthma with rs1990760 (p.T946A) in IFIH1. Our results demonstrate PheWAS as a powerful addition to the toolkit for drug discovery.


Subject(s)
Drug Discovery/methods , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide , Asthma/genetics , Cohort Studies , Databases, Factual , Genetic Association Studies , Genetic Pleiotropy , Genetic Predisposition to Disease , Humans , Interferon-Induced Helicase, IFIH1/genetics , Lipase/genetics , Membrane Proteins/genetics , Molecular Targeted Therapy/methods , Phenotype , Reproducibility of Results , Thromboembolism/genetics , United Kingdom
4.
Nat Genet ; 48(11): 1303-1312, 2016 11.
Article in English | MEDLINE | ID: mdl-27668658

ABSTRACT

Large-scale whole-genome sequence data sets offer novel opportunities to identify genetic variation underlying human traits. Here we apply genotype imputation based on whole-genome sequence data from the UK10K and 1000 Genomes Project into 35,981 study participants of European ancestry, followed by association analysis with 20 quantitative cardiometabolic and hematological traits. We describe 17 new associations, including 6 rare (minor allele frequency (MAF) < 1%) or low-frequency (1% < MAF < 5%) variants with platelet count (PLT), red blood cell indices (MCH and MCV) and HDL cholesterol. Applying fine-mapping analysis to 233 known and new loci associated with the 20 traits, we resolve the associations of 59 loci to credible sets of 20 or fewer variants and describe trait enrichments within regions of predicted regulatory function. These findings improve understanding of the allelic architecture of risk factors for cardiometabolic and hematological diseases and provide additional functional insights with the identification of potentially novel biological targets.


Subject(s)
Genetic Loci , Genome, Human , Genome-Wide Association Study , Heart Diseases/genetics , Hematologic Diseases/genetics , Female , Genetic Predisposition to Disease , Genetic Variation , Humans , Male , Quantitative Trait Loci , Sequence Analysis, DNA
5.
Sci Rep ; 5: 17447, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26616738

ABSTRACT

Chlamydia trachomatis causes both trachoma and sexually transmitted infections. These diseases have similar pathology and potentially similar genetic predisposing factors. We aimed to identify polymorphisms and pathways associated with pathological sequelae of ocular Chlamydia trachomatis infections in The Gambia. We report a discovery phase genome-wide association study (GWAS) of scarring trachoma (1090 cases, 1531 controls) that identified 27 SNPs with strong, but not genome-wide significant, association with disease (5 × 10(-6) > P > 5 × 10(-8)). The most strongly associated SNP (rs111513399, P = 5.38 × 10(-7)) fell within a gene (PREX2) with homology to factors known to facilitate chlamydial entry to the host cell. Pathway analysis of GWAS data was significantly enriched for mitotic cell cycle processes (P = 0.001), the immune response (P = 0.00001) and for multiple cell surface receptor signalling pathways. New analyses of published transcriptome data sets from Gambia, Tanzania and Ethiopia also revealed that the same cell cycle and immune response pathways were enriched at the transcriptional level in various disease states. Although unconfirmed, the data suggest that genetic associations with chlamydial scarring disease may be focussed on processes relating to the immune response, the host cell cycle and cell surface receptor signalling.


Subject(s)
Chlamydia trachomatis/immunology , Conjunctivitis, Inclusion/etiology , Conjunctivitis, Inclusion/pathology , Genome-Wide Association Study , Immunity, Innate , Adult , Computational Biology/methods , Conjunctivitis, Inclusion/metabolism , Disease Susceptibility , Female , Fibrosis , Gene Ontology , Gene Regulatory Networks , Genomics/methods , Humans , Male , Middle Aged , Models, Biological , Polymorphism, Single Nucleotide , Signal Transduction
6.
Eur J Hum Genet ; 22(10): 1190-200, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24549058

ABSTRACT

The Wellcome Trust Case Control Consortium 3 anorexia nervosa genome-wide association scan includes 2907 cases from 15 different populations of European origin genotyped on the Illumina 670K chip. We compared methods for identifying population stratification, and suggest list of markers that may help to counter this problem. It is usual to identify population structure in such studies using only common variants with minor allele frequency (MAF) >5%; we find that this may result in highly informative SNPs being discarded, and suggest that instead all SNPs with MAF >1% may be used. We established informative axes of variation identified via principal component analysis and highlight important features of the genetic structure of diverse European-descent populations, some studied for the first time at this scale. Finally, we investigated the substructure within each of these 15 populations and identified SNPs that help capture hidden stratification. This work can provide information regarding the designing and interpretation of association results in the International Consortia.


Subject(s)
Genetic Markers , Genetics, Population/methods , White People/genetics , Anorexia Nervosa/genetics , Gene Frequency , Genome-Wide Association Study , Genotyping Techniques , Humans , Oligonucleotide Array Sequence Analysis , Phylogeography , Polymorphism, Single Nucleotide , Principal Component Analysis , Reproducibility of Results , Sample Size
7.
PLoS One ; 7(3): e31369, 2012.
Article in English | MEDLINE | ID: mdl-22479309

ABSTRACT

Brachial circumference (BC), also known as upper arm or mid arm circumference, can be used as an indicator of muscle mass and fat tissue, which are distributed differently in men and women. Analysis of anthropometric measures of peripheral fat distribution such as BC could help in understanding the complex pathophysiology behind overweight and obesity. The purpose of this study is to identify genetic variants associated with BC through a large-scale genome-wide association scan (GWAS) meta-analysis. We used fixed-effects meta-analysis to synthesise summary results across 14 GWAS discovery and 4 replication cohorts comprising overall 22,376 individuals (12,031 women and 10,345 men) of European ancestry. Individual analyses were carried out for men, women, and combined across sexes using linear regression and an additive genetic model: adjusted for age and adjusted for age and BMI. We prioritised signals for follow-up in two-stages. We did not detect any signals reaching genome-wide significance. The FTO rs9939609 SNP showed nominal evidence for association (p<0.05) in the age-adjusted strata for men and across both sexes. In this first GWAS meta-analysis for BC to date, we have not identified any genome-wide significant signals and do not observe robust association of previously established obesity loci with BC. Large-scale collaborations will be necessary to achieve higher power to detect loci underlying BC.


Subject(s)
Arm/anatomy & histology , Genome-Wide Association Study/methods , Obesity/genetics , Overweight/genetics , Polymorphism, Single Nucleotide , Adolescent , Adult , Aged , Aged, 80 and over , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Anthropometry/methods , Body Mass Index , Chromosome Mapping , Cohort Studies , Female , Genetic Predisposition to Disease/genetics , Genotype , Humans , Male , Middle Aged , Proteins/genetics , White People/genetics
8.
PLoS Genet ; 8(2): e1002490, 2012.
Article in English | MEDLINE | ID: mdl-22359512

ABSTRACT

Phospho- and sphingolipids are crucial cellular and intracellular compounds. These lipids are required for active transport, a number of enzymatic processes, membrane formation, and cell signalling. Disruption of their metabolism leads to several diseases, with diverse neurological, psychiatric, and metabolic consequences. A large number of phospholipid and sphingolipid species can be detected and measured in human plasma. We conducted a meta-analysis of five European family-based genome-wide association studies (N = 4034) on plasma levels of 24 sphingomyelins (SPM), 9 ceramides (CER), 57 phosphatidylcholines (PC), 20 lysophosphatidylcholines (LPC), 27 phosphatidylethanolamines (PE), and 16 PE-based plasmalogens (PLPE), as well as their proportions in each major class. This effort yielded 25 genome-wide significant loci for phospholipids (smallest P-value = 9.88×10(-204)) and 10 loci for sphingolipids (smallest P-value = 3.10×10(-57)). After a correction for multiple comparisons (P-value<2.2×10(-9)), we observed four novel loci significantly associated with phospholipids (PAQR9, AGPAT1, PKD2L1, PDXDC1) and two with sphingolipids (PLD2 and APOE) explaining up to 3.1% of the variance. Further analysis of the top findings with respect to within class molar proportions uncovered three additional loci for phospholipids (PNLIPRP2, PCDH20, and ABDH3) suggesting their involvement in either fatty acid elongation/saturation processes or fatty acid specific turnover mechanisms. Among those, 14 loci (KCNH7, AGPAT1, PNLIPRP2, SYT9, FADS1-2-3, DLG2, APOA1, ELOVL2, CDK17, LIPC, PDXDC1, PLD2, LASS4, and APOE) mapped into the glycerophospholipid and 12 loci (ILKAP, ITGA9, AGPAT1, FADS1-2-3, APOA1, PCDH20, LIPC, PDXDC1, SGPP1, APOE, LASS4, and PLD2) to the sphingolipid pathways. In large meta-analyses, associations between FADS1-2-3 and carotid intima media thickness, AGPAT1 and type 2 diabetes, and APOA1 and coronary artery disease were observed. In conclusion, our study identified nine novel phospho- and sphingolipid loci, substantially increasing our knowledge of the genetic basis for these traits.


Subject(s)
Genome, Human , Genome-Wide Association Study , Phospholipids , Sphingolipids , White People/genetics , Carotid Intima-Media Thickness , Databases, Genetic , Delta-5 Fatty Acid Desaturase , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/genetics , Genetic Loci , Humans , Phospholipids/blood , Phospholipids/genetics , Polymorphism, Single Nucleotide , Sphingolipids/blood , Sphingolipids/genetics
9.
Nat Genet ; 43(4): 329-32, 2011 Mar 13.
Article in English | MEDLINE | ID: mdl-21399635

ABSTRACT

In addition to the HLA locus, six genetic risk factors for primary biliary cirrhosis (PBC) have been identified in recent genome-wide association studies (GWAS). To identify additional loci, we carried out a GWAS using 1,840 cases from the UK PBC Consortium and 5,163 UK population controls as part of the Wellcome Trust Case Control Consortium 3 (WTCCC3). We followed up 28 loci in an additional UK cohort of 620 PBC cases and 2,514 population controls. We identified 12 new susceptibility loci (at a genome-wide significance level of P < 5 × 10⁻8) and replicated all previously associated loci. We identified three further new loci in a meta-analysis of data from our study and previously published GWAS results. New candidate genes include STAT4, DENND1B, CD80, IL7R, CXCR5, TNFRSF1A, CLEC16A and NFKB1. This study has considerably expanded our knowledge of the genetic architecture of PBC.


Subject(s)
Liver Cirrhosis, Biliary/genetics , Adaptive Immunity/genetics , B7-1 Antigen/genetics , Case-Control Studies , Cohort Studies , Databases, Genetic , Death Domain Receptor Signaling Adaptor Proteins/genetics , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Guanine Nucleotide Exchange Factors/genetics , Humans , Immunity, Innate/genetics , Lectins, C-Type/genetics , Linkage Disequilibrium , Liver Cirrhosis, Biliary/immunology , Male , Monosaccharide Transport Proteins/genetics , NF-kappa B p50 Subunit/genetics , Polymorphism, Single Nucleotide , Receptors, CXCR5/genetics , Receptors, Interleukin-7/genetics , Receptors, Tumor Necrosis Factor, Type I/genetics , Risk Factors , STAT4 Transcription Factor/genetics
10.
PLoS One ; 5(11): e13996, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-21085596

ABSTRACT

The human genome is characterised by many runs of homozygous genotypes, where identical haplotypes were inherited from each parent. The length of each run is determined partly by the number of generations since the common ancestor: offspring of cousin marriages have long runs of homozygosity (ROH), while the numerous shorter tracts relate to shared ancestry tens and hundreds of generations ago. Human populations have experienced a wide range of demographic histories and hold diverse cultural attitudes to consanguinity. In a global population dataset, genome-wide analysis of long and shorter ROH allows categorisation of the mainly indigenous populations sampled here into four major groups in which the majority of the population are inferred to have: (a) recent parental relatedness (south and west Asians); (b) shared parental ancestry arising hundreds to thousands of years ago through long term isolation and restricted effective population size (N(e)), but little recent inbreeding (Oceanians); (c) both ancient and recent parental relatedness (Native Americans); and (d) only the background level of shared ancestry relating to continental N(e) (predominantly urban Europeans and East Asians; lowest of all in sub-Saharan African agriculturalists), and the occasional cryptically inbred individual. Moreover, individuals can be positioned along axes representing this demographic historic space. Long runs of homozygosity are therefore a globally widespread and under-appreciated characteristic of our genomes, which record past consanguinity and population isolation and provide a distinctive record of the demographic history of an individual's ancestors. Individual ROH measures will also allow quantification of the disease risk arising from polygenic recessive effects.


Subject(s)
Consanguinity , Genetics, Population/statistics & numerical data , Genome, Human/genetics , Haplotypes/genetics , Asian People/genetics , Female , Homozygote , Humans , Indians, North American/genetics , Male , Polymorphism, Single Nucleotide , White People/genetics
11.
Ann Hum Genet ; 74(6): 471-8, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20849430

ABSTRACT

Genome-wide association (GWA) studies have identified around 20 common genetic variants influencing the risk of type 2 diabetes (T2D). Likewise, a number of variants have been associated with diabetes-related quantitative glycaemic traits, but to date the overlap between these genes and variants has been low. The majority of genetic studies have focused on fasting plasma glucose levels; however, this measure is highly variable. We have conducted a GWA meta-analysis of glycated haemoglobin (HbA1(C) ) levels within three healthy nondiabetic populations. This phenotype provides an estimate of mean glucose levels over 2-3 months and is a more stable predictor of future diabetes risk. Participants were from three isolated populations: the Orkney Isles in the north of Scotland, the Dalmatian islands of Vis, and Korcula in Croatia (total of 1782 nondiabetic subjects). Association was tested in each population and results combined by meta-analysis. The strongest association was with the TCF7L2 gene (rs7903146, P= 1.48 × 10⁻7). This is also the strongest common genetic risk factor for T2D but it has not been identified in previous genome-wide studies of glycated haemoglobin.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study , Glycated Hemoglobin/genetics , Transcription Factor 7-Like 2 Protein/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Croatia/epidemiology , Diabetes Mellitus, Type 2/blood , Female , Genotype , Glycated Hemoglobin/metabolism , Humans , Male , Middle Aged , Phenotype , Scotland/epidemiology , Young Adult
12.
Nat Genet ; 42(7): 579-89, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20581827

ABSTRACT

By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined P<5x10(-8). These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease/genetics , Genome, Human/genetics , Polymorphism, Single Nucleotide , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Dual-Specificity Phosphatases/genetics , Fasting/blood , Gene Dosage , Gene Expression Profiling , Genetic Heterogeneity , Genome-Wide Association Study , Hepatocyte Nuclear Factor 1-alpha/genetics , Humans , KCNQ1 Potassium Channel/genetics , Meta-Analysis as Topic , Mitogen-Activated Protein Kinase Phosphatases/genetics
13.
Eur J Hum Genet ; 18(11): 1269-70, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20571506

ABSTRACT

The genetic structure of human populations is important in population genetics, forensics and medicine. Using genome-wide scans and individuals with all four grandparents born in the same settlement, we here demonstrate remarkable geographical structure across 8-30 km in three different parts of rural Europe. After excluding close kin and inbreeding, village of origin could still be predicted correctly on the basis of genetic data for 89-100% of individuals.


Subject(s)
Genetics, Population/methods , Genome, Human/genetics , Rural Population , Europe , Family Health , Humans , Models, Genetic , Polymorphism, Single Nucleotide , Principal Component Analysis
14.
Nat Genet ; 42(2): 105-16, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20081858

ABSTRACT

Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes.


Subject(s)
Blood Glucose/genetics , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/genetics , Fasting/blood , Genetic Loci/genetics , Genetic Predisposition to Disease , Homeostasis/genetics , Adolescent , Adult , Alleles , Child , DNA Copy Number Variations/genetics , Databases, Genetic , Delta-5 Fatty Acid Desaturase , Gene Expression Regulation , Genome-Wide Association Study , Humans , Meta-Analysis as Topic , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Quantitative Trait, Heritable , Reproducibility of Results
15.
Obesity (Silver Spring) ; 18(4): 803-8, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19851299

ABSTRACT

As major risk-factors for diabetes and cardiovascular diseases, the genetic contribution to obesity-related traits has been of interest for decades. Recently, a limited number of common genetic variants, which have replicated in different populations, have been identified. One approach to increase the statistical power in genetic mapping studies is to focus on populations with increased levels of linkage disequilibrium (LD) and reduced genetic diversity. We have performed joint linkage and genome-wide association analyses for weight and BMI in 3,448 (linkage) and 3,925 (association) partly overlapping healthy individuals from five European populations. A total of four chromosomal regions (two for weight and two for BMI) showed suggestive linkage (lod >2.69) either in one of the populations or in the joint data. At the genome-wide level (nominal P < 1.6 x 10(-7), Bonferroni-adjusted P < 0.05) one single-nucleotide polymorphism (SNP) (rs12517906) (nominal P = 7.3 x 10(-8)) was associated with weight, whereas none with BMI. The SNP associated with weight is located close to MGAT1. The monoacylglycerol acyltransferase (MGAT) enzyme family is known to be involved in dietary fat absorption. There was no overlap between the linkage regions and the associated SNPs. Our results show that genetic effects influencing weight and BMI are shared across diverse European populations, even though some of these populations have experienced recent population bottlenecks and/or been affected by genetic drift. The analysis enabled us to identify a new candidate gene, MGAT1, associated with weight in women.


Subject(s)
Acyltransferases/genetics , Body Mass Index , Dietary Fats/metabolism , Genetic Linkage , Lipid Metabolism/genetics , Obesity/genetics , Polymorphism, Single Nucleotide , Chromosome Mapping , Europe , Female , Genetic Predisposition to Disease , Genetics, Population , Genome , Genome-Wide Association Study , Humans , Male , Multigene Family , Phenotype , Risk Factors
16.
Circ Cardiovasc Genet ; 2(4): 322-8, 2009 Aug.
Article in English | MEDLINE | ID: mdl-20031603

ABSTRACT

BACKGROUND: We set out to identify common genetic determinants of the length of the RR and QT intervals in 2325 individuals from isolated European populations. METHODS AND RESULTS: We analyzed the heart rate at rest, measured as the RR interval, and the length of the corrected QT interval for association with 318 237 single-nucleotide polymorphisms. The RR interval was associated with common variants within GPR133, a G-protein-coupled receptor (rs885389, P=3.9 x 10(-8)). The QT interval was associated with the earlier reported NOS1AP gene (rs2880058, P=2.00 x 10(-10)) and with a region on chromosome 13 (rs2478333, P=4.34 x 10(-8)), which is 100 kb from the closest known transcript LOC730174 and has previously not been associated with the length of the QT interval. CONCLUSIONS: Our results suggested an association between the RR interval and GPR133 and confirmed an association between the QT interval and NOS1AP.


Subject(s)
Electrocardiography , Heart Rate/genetics , White People/genetics , Adaptor Proteins, Signal Transducing/genetics , Adult , Aged , Chromosomes, Human, Pair 13 , Female , Genome-Wide Association Study , Genotype , Humans , Male , Middle Aged , Phenotype , Polymorphism, Single Nucleotide , Receptors, G-Protein-Coupled/genetics
17.
PLoS Genet ; 5(10): e1000672, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19798445

ABSTRACT

Sphingolipids have essential roles as structural components of cell membranes and in cell signalling, and disruption of their metabolism causes several diseases, with diverse neurological, psychiatric, and metabolic consequences. Increasingly, variants within a few of the genes that encode enzymes involved in sphingolipid metabolism are being associated with complex disease phenotypes. Direct experimental evidence supports a role of specific sphingolipid species in several common complex chronic disease processes including atherosclerotic plaque formation, myocardial infarction (MI), cardiomyopathy, pancreatic beta-cell failure, insulin resistance, and type 2 diabetes mellitus. Therefore, sphingolipids represent novel and important intermediate phenotypes for genetic analysis, yet little is known about the major genetic variants that influence their circulating levels in the general population. We performed a genome-wide association study (GWAS) between 318,237 single-nucleotide polymorphisms (SNPs) and levels of circulating sphingomyelin (SM), dihydrosphingomyelin (Dih-SM), ceramide (Cer), and glucosylceramide (GluCer) single lipid species (33 traits); and 43 matched metabolite ratios measured in 4,400 subjects from five diverse European populations. Associated variants (32) in five genomic regions were identified with genome-wide significant corrected p-values ranging down to 9.08x10(-66). The strongest associations were observed in or near 7 genes functionally involved in ceramide biosynthesis and trafficking: SPTLC3, LASS4, SGPP1, ATP10D, and FADS1-3. Variants in 3 loci (ATP10D, FADS3, and SPTLC3) associate with MI in a series of three German MI studies. An additional 70 variants across 23 candidate genes involved in sphingolipid-metabolizing pathways also demonstrate association (p = 10(-4) or less). Circulating concentrations of several key components in sphingolipid metabolism are thus under strong genetic control, and variants in these loci can be tested for a role in the development of common cardiovascular, metabolic, neurological, and psychiatric diseases.


Subject(s)
Sphingolipids/blood , White People/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Delta-5 Fatty Acid Desaturase , Female , Genome-Wide Association Study , Genotype , Humans , Male , Middle Aged , Pedigree , Polymorphism, Single Nucleotide , Young Adult
18.
Kidney Int ; 76(3): 297-306, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19387472

ABSTRACT

There is increasing evidence for a role of genetic predisposition in the etiology of kidney disease, but linkage scans have been poorly replicated. Here we performed a genome-wide linkage analysis of serum creatinine on 2859 individuals from isolated villages in South Tyrol (Italy), Rucphen (The Netherlands) and Vis Island (Croatia), populations that have been stable and permanently resident in their region. Linkage of serum creatinine levels to loci on chromosomes 7p14, 9p21, 11p15, 15q15-21, 16p13, and 18p11 was successfully replicated in at least one discovery population or in the pooled analysis. A novel locus was found on chromosome 10p11. Linkage to chromosome 22q13, independent of diabetes and hypertension, was detected over a region containing the non-muscle myosin heavy chain type II isoform A (MYH9) gene (LOD score=3.52). In non-diabetic individuals, serum creatinine was associated with this gene in two of the three populations and in meta-analysis (SNP rs11089788, P-value=0.0089). In populations sharing a homogeneous environment and genetic background, heritability of serum creatinine was higher than in outbred populations, with consequent detection of a larger number of loci than reported before. Our finding of a replicated association of serum creatinine with the MYH9 gene, recently linked to pathological renal conditions in African Americans, suggests that this gene may also influence kidney function in healthy Europeans.


Subject(s)
Creatinine/blood , Genome, Human , Genome-Wide Association Study , Molecular Motor Proteins/genetics , Myosin Heavy Chains/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Europe , Female , Humans , Lod Score , Male , Middle Aged , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable , White People/genetics , Young Adult
19.
Hum Mol Genet ; 18(2): 373-80, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-18952825

ABSTRACT

Genes for height have gained interest for decades, but only recently have candidate genes started to be identified. We have performed linkage analysis and genome-wide association for height in approximately 4000 individuals from five European populations. A total of five chromosomal regions showed suggestive linkage and in one of these regions, two SNPs (rs849140 and rs1635852) were associated with height (nominal P = 7.0 x 10(-8) and P = 9.6 x 10(-7), respectively). In total, five SNPs across the genome showed an association with height that reached the threshold of genome-wide significance (nominal P < 1.6 x 10(-7)). The association with height was replicated for two SNPs (rs1635852 and rs849140) using three independent studies (n = 31 077, n=1268 and n = 5746) with overall meta P-values of 9.4 x 10(-10) and 5.3 x 10(-8). These SNPs are located in the JAZF1 gene, which has recently been associated with type II diabetes, prostate and endometrial cancer. JAZF1 is a transcriptional repressor of NR2C2, which results in low IGF1 serum concentrations, perinatal and early postnatal hypoglycemia and growth retardation when knocked out in mice. Both the linkage and association analyses independently identified the JAZF1 region affecting human height. We have demonstrated, through replication in additional independent populations, the consistency of the effect of the JAZF1 SNPs on height. Since this gene also has a key function in the metabolism of growth, JAZF1 represents one of the strongest candidates influencing human height identified so far.


Subject(s)
Body Height/genetics , Genetic Linkage , Genome-Wide Association Study , Neoplasm Proteins/genetics , Co-Repressor Proteins , DNA-Binding Proteins , Female , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , White People/genetics
20.
Am J Hum Genet ; 83(3): 359-72, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18760389

ABSTRACT

Estimating individual genome-wide autozygosity is important both in the identification of recessive disease variants via homozygosity mapping and in the investigation of the effects of genome-wide homozygosity on traits of biomedical importance. Approaches have tended to involve either single-point estimates or rather complex multipoint methods of inferring individual autozygosity, all on the basis of limited marker data. Now, with the availability of high-density genome scans, a multipoint, observational method of estimating individual autozygosity is possible. Using data from a 300,000 SNP panel in 2618 individuals from two isolated and two more-cosmopolitan populations of European origin, we explore the potential of estimating individual autozygosity from data on runs of homozygosity (ROHs). Termed F(roh), this is defined as the proportion of the autosomal genome in runs of homozygosity above a specified length. Mean F(roh) distinguishes clearly between subpopulations classified in terms of grandparental endogamy and population size. With the use of good pedigree data for one of the populations (Orkney), F(roh) was found to correlate strongly with the inbreeding coefficient estimated from pedigrees (r = 0.86). Using pedigrees to identify individuals with no shared maternal and paternal ancestors in five, and probably at least ten, generations, we show that ROHs measuring up to 4 Mb are common in demonstrably outbred individuals. Given the stochastic variation in ROH number, length, and location and the fact that ROHs are important whether ancient or recent in origin, approaches such as this will provide a more useful description of genomic autozygosity than has hitherto been possible.


Subject(s)
Genome, Human , Homozygote , Pedigree , White People/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Female , Haplotypes , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...