Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Phys J E Soft Matter ; 44(11): 132, 2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34718875

ABSTRACT

Understanding the physical and chemical properties of viral infections at molecular scales is a major challenge for the scientific community more so with the outbreak of global pandemics. There is currently a lot of effort being placed in identifying molecules that could act as putative drugs or blockers of viral molecules. In this work, we computationally explore the importance in antiviral activity of a less studied class of molecules, namely surfactants. We employ all-atoms molecular dynamics simulations to study the interaction between the receptor-binding domain of the SARS-CoV-2 spike protein and the phospholipid lecithin (POPC), in water. Our microsecond simulations show a preferential binding of lecithin to the receptor-binding motif of SARS-CoV-2 with binding free energies significantly larger than [Formula: see text]. Furthermore, hydrophobic interactions involving lecithin non-polar tails dominate these binding events, which are also accompanied by dewetting of the receptor binding motif. Through an analysis of fluctuations in the radius of gyration of the receptor-binding domain, its contact maps with lecithin molecules, and distributions of water molecules near the binding region, we elucidate molecular interactions that may play an important role in interactions involving surfactant-type molecules and viruses. We discuss our minimal computational model in the context of lecithin-based liposomal nasal sprays as putative mitigating therapies for COVID-19.


Subject(s)
Lecithins/chemistry , Molecular Docking Simulation , Phosphatidylcholines/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Surface-Active Agents/chemistry , Binding Sites , Hydrophobic and Hydrophilic Interactions , Nasal Sprays , Protein Binding , Spike Glycoprotein, Coronavirus/metabolism
2.
J Am Chem Soc ; 143(37): 15103-15112, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34498857

ABSTRACT

We study the properties of the interface of water and the surfactant hexaethylene glycol monododecyl ether (C12E6) with a combination of heterodyne-detected vibrational sum frequency generation (HD-VSFG), Kelvin-probe measurements, and molecular dynamics (MD) simulations. We observe that the addition of the hydrogen-bonding surfactant C12E6, close to the critical micelle concentration (CMC), induces a drastic enhancement in the hydrogen bond strength of the water molecules close to the interface, as well as a flip in their net orientation. The mutual orientation of the water and C12E6 molecules leads to the emergence of a broad (∼3 nm) interface with a large electric field of ∼1 V/nm, as evidenced by the Kelvin-probe measurements and MD simulations. Our findings may open the door for the design of novel electric-field-tuned catalytic and light-harvesting systems anchored at the water-surfactant-air interface.

3.
Phys Chem Chem Phys ; 19(14): 9478-9484, 2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28338127

ABSTRACT

In the last decade, recent synthetic advances have launched carbon-based π-conjugated hoops to the forefront of theoretical and experimental investigation not only for their potential use as bottom-up templates for carbon nanotube (CNT) growth, but also for the interesting excitonic effects arising from the cyclic geometry, unique π-system orientation, and unusual electronic interactions and couplings. In particular, cyclic materials based on pyrene, a common component in organic electronics, are popular candidates for the future design of π-conjugated nanorings for optoelectronic applications. Understanding the photophysical response in cyclic oligopyrenes can be achieved using non-adiabatic excited state molecular dynamics (NA-ESMD). Through NA-ESMD modeling, we reveal details of the nonradiative relaxation processes in the circular pyrene tetramer [4]cyclo-2,7-pyrenylene ([4]CPY) where we find that the strong non-adiabatic coupling combined with the dense manifold of excited states creates an internal conversion mechanism dominated by ultrafast sequential quantum transitions. However, we observe two long-lived electronic excited states that introduce a phonon bottleneck in the electronic relaxation process. In fact, the timescale for the electronic relaxation is almost exclusively dominated by the lifetimes of the long-lived states. We find that the states associated with the phonon bottleneck are separated from lower energy states by large energy gaps and are characterized by localization on a single pyrene unit resulting in a spatial mismatch with strongly delocalized neighboring states.

4.
J Chem Phys ; 144(5): 054307, 2016 Feb 07.
Article in English | MEDLINE | ID: mdl-26851921

ABSTRACT

The resonant Raman spectra of the H2O⋯Cl2 and H2O⋯Br2 halogen-bonded complexes have been studied in the framework of a 2-dimensional model previously used in the simulation of their UV-visible absorption spectra using time-dependent techniques. In addition to the vibrational progression along the dihalogen mode, a progression is observed along the intermolecular mode and its combination with the intramolecular one. The relative intensity of the inter to intramolecular vibrational progressions is about 15% for H2O⋯Cl2 and 33% for H2O⋯Br2. These results make resonant Raman spectra a potential tool for detecting the presence of halogen bonded complexes in condensed phase media such as clathrates and ice.

5.
J Phys Chem A ; 115(23): 5983-91, 2011 Jun 16.
Article in English | MEDLINE | ID: mdl-21284388

ABSTRACT

Valence electronic excitation spectra are calculated for the H(2)O···Br(2) complex using highly correlated ab initio potentials for both the ground and the valence electronic excited states and a 2-D approximation for vibrational motion. Due to the strong interaction between the O-Br and the Br-Br stretching motions, inclusion of these vibrations is the minimum necessary for the spectrum calculation. A basis set calculation is performed to determine the vibrational wave functions for the ground electronic state and a wave packet simulation is conducted for the nuclear dynamics on the excited state surfaces. The effects of both the spin-orbit interaction and temperature on the spectra are explored. The interaction of Br(2) with a single water molecule induces nearly as large a shift in the spectrum as is observed for an aqueous solution. In contrast, complex formation has a remarkably small effect on the T = 0 K width of the valence bands due to the fast dissociation of the dihalogen bond upon excitation. We therefore conclude that the widths of the spectra in aqueous solution are mostly due to inhomogeneous broadening.


Subject(s)
Bromine/chemistry , Quantum Theory , Water/chemistry , Dimerization
6.
J Phys Chem A ; 113(26): 7563-9, 2009 Jul 02.
Article in English | MEDLINE | ID: mdl-19419140

ABSTRACT

Valence electronic excitation spectra are calculated for the H(2)O...Cl(2) dimer using state-of-the art ab initio potentials for both the ground and the valence excited states, a basis set calculation of the ground state nuclear wave function, and a wave packet analysis to simulate the dynamics on the excited state surface. The peak of the H(2)O...Cl(2) dimer spectrum is blue-shifted by 1250 cm(-1) from that of the free Cl(2) molecule. This is less than the value previously estimated from vertical excitation energies but still significantly more than the blue shift in aqueous solution and clathrate-hydrate solid. Seventy percent of the blue shift is attributed to ground state stabilization, the rest to excited state repulsion. Spin-orbit effects are found to be small for this dimer. Homogeneous broadening is found to be slightly smaller for the dimer than for the free Cl(2). The reflection principle and spectator model approximations were tested and found to be quite satisfactory. This is promising for an eventual simulation of the condensed phase spectra.

SELECTION OF CITATIONS
SEARCH DETAIL
...