Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Life Sci ; 285: 119993, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34592231

ABSTRACT

AIMS: Characterizing cannabinoid receptors (CBRs) expressed in Ewing sarcoma (EWS) cell lines as potential targets for anti-cancer drug development. MAIN METHODS: CBR affinity and function were examined by competitive binding and G-protein activation, respectively. Cannabinoid-mediated cytotoxicity and cell viability were evaluated by LDH, and trypan blue assays, respectively. KEY FINDINGS: qRT-PCR detected CB1 (CB1R) and CB2 receptor (CB2R) mRNA in TC-71 cells. However, binding screens revealed that CBRs expressed exhibit atypical properties relative to canonical receptors, because specific binding in TC-71 could only be demonstrated by the established non-selective CB1/CB2R radioligand [3H]WIN-55,212-2, but not CB1/CB2R radioligand [3H]CP-55,940. Homologous receptor binding demonstrated that [3H]WIN-55,212-2 binds to a single site with nanomolar affinity, expressed at high density. Further support for non-canonical CBRs expression is provided by subsequent binding screens, revealing that only 9 out of 28 well-characterized cannabinoids with high affinity for canonical CB1 and/or CB2Rs were able to displace [3H]WIN-55,212-2, whereas two ligands enhanced [3H]WIN-55,212-2 binding. Five cannabinoids producing the greatest [3H]WIN-55,212-2 displacement exhibited high nanomolar affinity (Ki) for expressed receptors. G-protein modulation and adenylyl cyclase assays further indicate that these CBRs exhibit distinct signaling/functional profiles compared to canonical CBRs. Importantly, cannabinoids with the highest affinity for non-canonical CBRs reduced TC-71 viability and induced cytotoxicity in a time-dependent manner. Studies in a second EWS cell line (A-673) showed similar atypical binding properties of expressed CBRs, and cannabinoid treatment produced cytotoxicity. SIGNIFICANCE: Cannabinoids induce cytotoxicity in EWS cell lines via non-canonical CBRs, which might be a potential therapeutic target to treat EWS.


Subject(s)
Antineoplastic Agents/pharmacology , Benzoxazines/pharmacology , Cannabinoids/pharmacology , Morpholines/pharmacology , Naphthalenes/pharmacology , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Sarcoma, Ewing/metabolism , Binding, Competitive , Cell Line, Tumor , Cytotoxins/pharmacology , Drug Development , Humans , Ligands , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB2/agonists
2.
J Pharmacol Exp Ther ; 369(2): 259-269, 2019 05.
Article in English | MEDLINE | ID: mdl-30833484

ABSTRACT

Most cannabinoid 1 receptor (CB1R) agonists will signal through both G protein-dependent and -independent pathways in an unbiased manner. Recruitment of ß-arrestin 2 desensitizes and internalizes receptors, producing tolerance that limits therapeutic utility of cannabinoids for chronic conditions. We developed the indole quinuclidinone (IQD) analog (Z)-2-((1-(4-fluorobenzyl)-1H-indol-3-yl)methylene)quinuclidin-3-one (PNR-4-20) as a novel G protein-biased agonist at CB1Rs, and the present studies determine if repeated administration of PNR-4-20 produces lesser tolerance to in vivo effects compared with unbiased CB1R agonists Δ9-tetrahydrocannabinol (Δ9-THC) and 1-pentyl-3-(1-naphthoyl)indole (JWH-018). Adult male National Institutes of Health Swiss mice were administered comparable doses of PNR-4-20 (100 mg/kg), Δ9-THC (30 mg/kg), or JWH-018 (3 mg/kg) once per day for five consecutive days to determine tolerance development to hypothermic, antinociceptive, and cataleptic effects. Persistence of tolerance was then determined after a drug abstinence period. We found that unbiased CB1R agonists Δ9-THC and JWH-018 produced similar tolerance to these effects, but lesser tolerance was observed with PNR-4-20 for hypothermic and cataleptic effects. Tolerance to the effects of PNR-4-20 completely recovered after drug abstinence, while residual tolerance was always observed with unbiased CB1R agonists. Repeated treatment with PNR-4-20 and Δ9-THC produced asymmetric crosstolerance to hypothermic effects. Importantly, binding studies suggest PNR-4-20 produced significantly less downregulation of CB1Rs relative to Δ9-THC in hypothalamus and thalamus of chronically treated mice. These studies suggest that the G protein-biased CB1R agonist PNR-4-20 produces significantly less tolerance than unbiased cannabinoid agonists, and that the IQD analogs should be investigated further as a novel molecular scaffold for development of new therapeutics.


Subject(s)
Dronabinol/pharmacology , Drug Tolerance , Indoles/pharmacology , Naphthalenes/pharmacology , Quinuclidines/pharmacology , Receptor, Cannabinoid, CB1/agonists , Animals , Cannabinoids/pharmacology , Catalepsy/drug therapy , Dose-Response Relationship, Drug , Indoles/therapeutic use , Male , Mice , Naphthalenes/therapeutic use , Nociception/drug effects , Quinuclidines/therapeutic use , Time Factors
3.
Front Pharmacol ; 9: 1084, 2018.
Article in English | MEDLINE | ID: mdl-30319418

ABSTRACT

Recreational use of marijuana is associated with few adverse effects, but abuse of synthetic cannabinoids (SCBs) can result in anxiety, psychosis, chest pain, seizures and death. To potentially explain higher toxicity associated with SCB use, we hypothesized that AB-PINACA, a common second generation SCB, exhibits atypical pharmacodynamic properties at CB1 cannabinoid receptors (CB1Rs) and/or a distinct metabolic profile when compared to Δ9-tetrahydrocannabinol (Δ9-THC), the principal psychoactive cannabinoid present in marijuana. Liquid chromatography tandem mass spectrometry (LC/MS) identified AB-PINACA and monohydroxy metabolite(s) as primary phase I metabolites (4OH-AB-PINACA and/or 5OH-AB-PINACA) in human urine and serum obtained from forensic samples. In vitro experiments demonstrated that when compared to Δ9-THC, AB-PINACA exhibits similar affinity for CB1Rs, but greater efficacy for G-protein activation and higher potency for adenylyl cyclase inhibition. Chronic treatment with AB-PINACA also results in greater desensitization of CB1Rs (e.g., tolerance) than Δ9-THC. Importantly, monohydroxy metabolites of AB-PINACA retain affinity and full agonist activity at CB1Rs. Incubation of 4OH-AB-PINACA and 5OH-AB-PINACA with human liver microsomes (HLMs) results in limited glucuronide formation when compared to that of JWH-018-M2, a major monohydroxylated metabolite of the first generation SCB JWH-018. Finally, AB-PINACA and 4OH-AB-PINACA are active in vivo, producing CB1R-mediated hypothermia in mice. Taken collectively, the atypical pharmacodynamic properties of AB-PINACA at CB1Rs relative to Δ9-THC (e.g., higher potency/efficacy and greater production of desensitization), coupled with an unusual metabolic profile (e.g., production of metabolically stable active phase I metabolites) may contribute to the pronounced adverse effects observed with abuse of this SCB compared to marijuana.

4.
Toxicol Appl Pharmacol ; 353: 31-42, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29906493

ABSTRACT

Selective estrogen receptor modulators (SERMs) target estrogen receptors (ERs) to treat breast cancer and osteoporosis. Several SERMs exhibit anti-cancer activity not related to ERs. To discover novel anti-cancer drugs acting via ER-independent mechanisms, derivatives of the SERM tamoxifen, known as the "ridaifen" compounds, have been developed that exhibit reduced or no ER affinity, while maintaining cytotoxicity. Tamoxifen and other SERMs bind to cannabinoid receptors with moderate affinity. Therefore, ER-independent effects of SERMs might be mediated via cannabinoid receptors. This study determined whether RID-B, a first generation ridaifen compound, exhibits affinity and/or activity at CB1 and/or CB2 cannabinoid receptors. RID-B binds with high affinity (Ki = 43.7 nM) and 17-fold selectivity to CB2 over CB1 receptors. RID-B acts as an inverse agonist at CB2 receptors, modulating G-protein and adenylyl cyclase activity with potency values predicted by CB2 affinity. Characteristic of an antagonist, RID-B co-incubation produces a parallel-rightward shift in the concentration-effect curve of CB2 agonist WIN-55,212-2 to inhibit adenylyl cyclase activity. CB2 inverse agonists are reported to exhibit anti-inflammatory and anti-ostoeclastogenic effects. In LPS-activated macrophages, RID-B exhibits anti-inflammatory effects by reducing levels of nitric oxide (NO), IL-6 and IL-1α, but not TNFα. Only reduction of NO concentration by RID-B is mediated by cannabinoid receptors. RID-B also exhibits pronounced anti-osteoclastogenic effects, reducing the number of osteoclasts differentiating from primary bone marrow macrophages in a cannabinoid receptor-dependent manner. In summary, the tamoxifen derivative RID-B, developed with reduced affinity for ERs, is a high affinity selective CB2 inverse agonist with anti-inflammatory and anti-osteoclastogenic properties.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Osteoclasts/drug effects , Pyrrolidines/pharmacology , Receptor, Cannabinoid, CB2/agonists , Selective Estrogen Receptor Modulators/pharmacology , Tamoxifen/analogs & derivatives , Adenylyl Cyclase Inhibitors/pharmacology , Animals , Benzoxazines/pharmacology , Binding, Competitive/drug effects , Bone Marrow Cells/drug effects , CHO Cells , Cell Differentiation/drug effects , Cricetinae , Cricetulus , Drug Inverse Agonism , Mice , Mice, Inbred C57BL , Morpholines/pharmacology , Naphthalenes/pharmacology , Pyrrolidines/metabolism , Receptor, Cannabinoid, CB1/drug effects , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Selective Estrogen Receptor Modulators/metabolism , Tamoxifen/metabolism , Tamoxifen/pharmacology
5.
Pharmacol Res ; 125(Pt B): 161-177, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28838808

ABSTRACT

The human cannabinoid subtype 1 receptor (hCB1R) is highly expressed in the CNS and serves as a therapeutic target for endogenous ligands as well as plant-derived and synthetic cannabinoids. Unfortunately, acute use of hCB1R agonists produces unwanted psychotropic effects and chronic administration results in development of tolerance and dependence, limiting the potential clinical use of these ligands. Studies in ß-arrestin knockout mice suggest that interaction of certain GPCRs, including µ-, δ-, κ-opioid and hCB1Rs, with ß-arrestins might be responsible for several adverse effects produced by agonists acting at these receptors. Indeed, agonists that bias opioid receptor activation toward G-protein, relative to ß-arrestin signaling, produce less severe adverse effects. These observations indicate that therapeutic utility of agonists acting at hCB1Rs might be improved by development of G-protein biased hCB1R agonists. Our laboratory recently reported a novel class of indole quinulidinone (IQD) compounds that bind cannabinoid receptors with relatively high affinity and act with varying efficacy. The purpose of this study was to determine whether agonists in this novel cannabinoid class exhibit ligand bias at hCB1 receptors. Our studies found that a novel IQD-derived hCB1 receptor agonist PNR-4-20 elicits robust G protein-dependent signaling, with transduction ratios similar to the non-biased hCB1R agonist CP-55,940. In marked contrast to CP-55,940, PNR-4-20 produces little to no ß-arrestin 2 recruitment. Quantitative calculation of bias factors indicates that PNR-4-20 exhibits from 5.4-fold to 29.5-fold bias for G protein, relative to ß-arrestin 2 signaling (when compared to G protein activation or inhibition of forskolin-stimulated cAMP accumulation, respectively). Importantly, as expected due to reduced ß-arrestin 2 recruitment, chronic exposure of cells to PNR-4-20 results in significantly less desensitization and down-regulation of hCB1Rs compared to similar treatment with CP-55,940. PNR-4-20 (i.p.) is active in the cannabinoid tetrad in mice and chronic treatment results in development of less persistent tolerance and no significant withdrawal signs when compared to animals repeatedly exposed to the non-biased full agoinst JWH-018 or Δ9-THC. Finally, studies of a structurally similar analog PNR- 4-02 show that it is also a G protein biased hCB1R agonist. It is predicted that cannabinoid agonists that bias hCB1R activation toward G protein, relative to ß-arrestin 2 signaling, will produce fewer and less severe adverse effects both acutely and chronically.


Subject(s)
Cannabinoid Receptor Agonists/pharmacology , GTP-Binding Proteins/metabolism , Quinuclidines/pharmacology , Animals , CHO Cells , Cricetulus , Cyclohexanols/pharmacology , Indoles/pharmacology , Male , Mice , Naphthalenes/pharmacology , Receptor, Cannabinoid, CB1/metabolism , beta-Arrestin 2/metabolism
6.
PLoS One ; 11(12): e0167240, 2016.
Article in English | MEDLINE | ID: mdl-27936172

ABSTRACT

Tamoxifen (Tam) is a selective estrogen receptor (ER) modulator (SERM) that is an essential drug to treat ER-positive breast cancer. Aside from known actions at ERs, recent studies have suggested that some SERMs like Tam also exhibit novel activity at cannabinoid subtype 1 and 2 receptors (CB1R and CB2Rs). Interestingly, cis- (E-Tam) and trans- (Z-Tam) isomers of Tam exhibit over a 100-fold difference in affinity for ERs. Therefore, the current study assessed individual isomers of Tam and subsequent cytochrome P450 metabolic products, 4-hydroxytamoxifen (4OHT) and 4-hydroxy-N-desmethyl tamoxifen (End) for affinity and activity at CBRs. Results showed that Z-4OHT, but not Z-Tam or Z-End, exhibits higher affinity for both CB1 and CB2Rs relative to the E-isomer. Furthermore, Z- and E-isomers of Tam and 4OHT show slightly higher affinity for CB2Rs, while both End isomers are relatively CB1R-selective. When functional activity was assessed by G-protein activation and regulation of the downstream effector adenylyl cyclase, all isomers examined act as full CB1 and CB2R inverse agonists. Interestingly, Z-Tam appears to be more efficacious than the full inverse agonist AM630 at CB2Rs, while both Z-Tam and Z-End exhibit characteristics of insurmountable antagonism at CB1 and CB2Rs, respectively. Collectively, these results suggest that the SERMs Tam, 4OHT and End elicit ER-independent actions via CBRs in an isomer-specific manner. As such, this novel structural scaffold might be used to develop therapeutically useful drugs for treatment of a variety of diseases mediated via CBRs.


Subject(s)
Breast Neoplasms/drug therapy , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Tamoxifen/metabolism , Adenylyl Cyclases/metabolism , Animals , Binding, Competitive , Breast Neoplasms/metabolism , CHO Cells , Cannabinoid Receptor Agonists/metabolism , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Antagonists/metabolism , Cannabinoid Receptor Antagonists/pharmacology , Colforsin/metabolism , Colforsin/pharmacology , Cricetinae , Cricetulus , Cyclic AMP/metabolism , Cyclohexanols/metabolism , Cyclohexanols/pharmacology , Female , GTP-Binding Proteins/metabolism , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Humans , Indoles/metabolism , Indoles/pharmacology , Isomerism , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Selective Estrogen Receptor Modulators/chemistry , Selective Estrogen Receptor Modulators/metabolism , Selective Estrogen Receptor Modulators/pharmacology , Tamoxifen/analogs & derivatives , Tamoxifen/chemistry , Tamoxifen/pharmacology
7.
Front Pharmacol ; 7: 503, 2016.
Article in English | MEDLINE | ID: mdl-28066250

ABSTRACT

Selective estrogen receptor modulators (SERMs) are used to treat estrogen receptor (ER)-positive breast cancer and osteoporosis. Interestingly, tamoxifen and newer classes of SERMs also exhibit cytotoxic effects in cancers devoid of ERs, indicating a non-estrogenic mechanism of action. Indicative of a potential ER-independent target, reports demonstrate that tamoxifen binds to cannabinoid receptors (CBRs) with affinity in the low µM range and acts as an inverse agonist. To identify cannabinoids with improved pharmacological properties relative to tamoxifen, and further investigate the use of different SERM scaffolds for future cannabinoid drug development, this study characterized the affinity and activity of SERMs in newer structural classes at CBRs. Fourteen SERMs from five structurally distinct classes were screened for binding to human CBRs. Compounds from four of five SERM classes examined bound to CBRs. Subsequent studies fully characterized CBR affinity and activity of one compound from each class. Ospemifine (a triphenylethylene) selectively bound to CB1Rs, while bazedoxifine (an indole) bound to CB2Rs with highest affinity. Nafoxidine (a tetrahydronaphthalene) and raloxifene (RAL; a benzothiaphene) bound to CB1 and CB2Rs non-selectively. All four compounds acted as inverse agonists at CB1 and CB2Rs, reducing basal G-protein activity with IC50 values in the nM to low µM range. Ospemifine, bazedoxifene and RAL also acted as inverse agonists to elevate basal intracellular cAMP levels in intact CHO-hCB2 cells. The four SERMs examined also acted as CB1 and CB2R antagonists in the cAMP assay, producing rightward shifts in the concentration-effect curve of the CBR agonist CP-55,940. In conclusion, newer classes of SERMs exhibit improved pharmacological characteristics (e.g., in CBR affinity and selectivity) relative to initial studies with tamoxifen, and thus suggest that different SERM scaffolds may be useful for development of safe and selective drugs acting via CBRs.

8.
Eur J Pharmacol ; 737: 140-8, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24858620

ABSTRACT

Our laboratory recently reported that a group of novel indole quinuclidine analogs bind with nanomolar affinity to cannabinoid type-1 and type-2 receptors. This study characterized the intrinsic activity of these compounds by determining whether they exhibit agonist, antagonist, or inverse agonist activity at cannabinoid type-1 and/or type-2 receptors. Cannabinoid receptors activate Gi/Go-proteins that then proceed to inhibit activity of the downstream intracellular effector adenylyl cyclase. Therefore, intrinsic activity was quantified by measuring the ability of compounds to modulate levels of intracellular cAMP in intact cells. Concerning cannabinoid type-1 receptors endogenously expressed in Neuro2A cells, a single analog exhibited agonist activity, while eight acted as neutral antagonists and two possessed inverse agonist activity. For cannabinoid type-2 receptors stably expressed in CHO cells, all but two analogs acted as agonists; these two exceptions exhibited inverse agonist activity. Confirming specificity at cannabinoid type-1 receptors, modulation of adenylyl cyclase activity by all proposed agonists and inverse agonists was blocked by co-incubation with the neutral cannabinoid type-1 antagonist O-2050. All proposed cannabinoid type-1 receptor antagonists attenuated adenylyl cyclase modulation by cannabinoid agonist CP-55,940. Specificity at cannabinoid type-2 receptors was confirmed by failure of all compounds to modulate adenylyl cyclase activity in CHO cells devoid of cannabinoid type-2 receptors. Further characterization of select analogs demonstrated concentration-dependent modulation of adenylyl cyclase activity with potencies similar to their respective affinities for cannabinoid receptors. Therefore, indole quinuclidines are a novel structural class of compounds exhibiting high affinity and a range of intrinsic activity at cannabinoid type-1 and type-2 receptors.


Subject(s)
Indoles/chemistry , Quinuclidines/metabolism , Quinuclidines/pharmacology , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Adenylyl Cyclase Inhibitors , Adenylyl Cyclases/metabolism , Animals , CHO Cells , Chemical Phenomena , Cricetinae , Cricetulus , Drug Inverse Agonism , Humans , Ligands , Mice , Quinuclidines/chemistry , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/antagonists & inhibitors
9.
Biochem Biophys Res Commun ; 441(2): 339-43, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24148245

ABSTRACT

Tamoxifen (Tam) is classified as a selective estrogen receptor modulator (SERM) and is used for treatment of patients with ER-positive breast cancer. However, it has been shown that Tam and its cytochrome P450-generated metabolite 4-hydroxy-Tam (4OH-Tam) also exhibit cytotoxic effects in ER-negative breast cancer cells. These observations suggest that Tam and 4OH-Tam can produce cytotoxicity via estrogen receptor (ER)-independent mechanism(s) of action. The molecular targets responsible for the ER-independent effects of Tam and its derivatives are poorly understood. Interestingly, similar to Tam and 4OH-Tam, cannabinoids have also been shown to exhibit anti-proliferative and apoptotic effects in ER-negative breast cancer cells, and estrogen can regulate expression levels of cannabinoid receptors (CBRs). Therefore, this study investigated whether CBRs might serve as novel molecular targets for Tam and 4OH-Tam. We report that both compounds bind to CB1 and CB2Rs with moderate affinity (0.9-3 µM). Furthermore, Tam and 4OH-Tam exhibit inverse activity at CB1 and CB2Rs in membrane preparations, reducing basal G-protein activity. Tam and 4OH-Tam also act as CB1/CB2R-inverse agonists to regulate the downstream intracellular effector adenylyl cyclase in intact cells, producing concentration-dependent increases in intracellular cAMP. These results suggest that CBRs are molecular targets for Tam and 4OH-Tam and may contribute to the ER-independent cytotoxic effects reported for these drugs. Importantly, these findings also indicate that Tam and 4OH-Tam might be used as structural scaffolds for development of novel, efficacious, non-toxic cancer drugs acting via CB1 and/or CB2Rs.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Inverse Agonism , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB2/agonists , Selective Estrogen Receptor Modulators/pharmacology , Tamoxifen/analogs & derivatives , Tamoxifen/pharmacology , Animals , Antineoplastic Agents/chemistry , CHO Cells , Cell Membrane/chemistry , Cricetulus , Humans , Mice , Protein Binding , Receptor, Cannabinoid, CB1/chemistry , Receptor, Cannabinoid, CB2/chemistry , Selective Estrogen Receptor Modulators/chemistry , Tamoxifen/chemistry
10.
J Med Chem ; 56(11): 4537-50, 2013 Jun 13.
Article in English | MEDLINE | ID: mdl-23631463

ABSTRACT

Attenuation of increased endocannabinoid signaling with a CB1R neutral antagonist might offer a new therapeutic direction for treatment of alcohol abuse. We have recently reported that a monohydroxylated metabolite of the synthetic aminoalkylindole cannabinoid JHW-073 (3) exhibits neutral antagonist activity at CB1Rs and thus may serve as a promising lead for the development of novel alcohol abuse therapies. In the current study, we show that systematic modification of an aminoalkylindole scaffold identified two new compounds with dual CB1R antagonist/CB2R agonist activity. Similar to the CB1R antagonist/inverse agonist rimonabant, analogues 27 and 30 decrease oral alcohol self-administration without affecting total fluid intake and block the development of alcohol-conditioned place preference. Collectively, these initial findings suggest that design and systematic modification of aminoalkylindoles such as 3 may lead to development of novel cannabinoid ligands with dual CB1R antagonist/CB2R agonist activity with potential for use as treatments of alcohol abuse.


Subject(s)
Alcoholism/drug therapy , Cannabinoid Receptor Agonists/chemical synthesis , Cannabinoid Receptor Antagonists/chemical synthesis , Indoles/chemical synthesis , Receptors, Cannabinoid/metabolism , Animals , CHO Cells , Cannabinoid Receptor Agonists/chemistry , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Antagonists/chemistry , Cannabinoid Receptor Antagonists/pharmacology , Conditioning, Classical/drug effects , Cricetinae , Cricetulus , Drug Design , Drug Inverse Agonism , Ethanol/administration & dosage , Ethanol/pharmacology , Humans , Indoles/chemistry , Indoles/pharmacology , Ligands , Mice , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB2/agonists , Self Administration , Structure-Activity Relationship
11.
Toxicol Appl Pharmacol ; 269(2): 100-8, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23537664

ABSTRACT

K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB1Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB2Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB2Rs (hCB2Rs). The affinity of cannabinoids for hCB2Rs was determined by competition binding studies employing CHO-hCB2 membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB2 cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB2Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB2Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ(9)-tetrahydrocannabinol (Δ(9)-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB2R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB2Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB2Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB1 and CB2Rs.


Subject(s)
Indoles/metabolism , Naphthalenes/metabolism , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/metabolism , Animals , CHO Cells , Cricetinae , Gene Expression Regulation , Humans , Indoles/chemistry , Molecular Structure , Naphthalenes/chemistry , Protein Binding , Psychotropic Drugs/chemistry , Psychotropic Drugs/metabolism , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/genetics , Receptors, Opioid, mu/genetics , Receptors, Opioid, mu/metabolism
12.
Neuropharmacology ; 63(5): 905-15, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22771770

ABSTRACT

Mu-opioid and CB1-cannabinoid agonists produce analgesia; however, adverse effects limit use of drugs in both classes. Additive or synergistic effects resulting from concurrent administration of low doses of mu- and CB1-agonists may produce analgesia with fewer side effects. Synergism potentially results from interaction between mu-opioid receptors (MORs) and CB1 receptors (CB1Rs). AM-251 and rimonabant are CB1R antagonist/inverse agonists employed to validate opioid-cannabinoid interactions, presumed to act selectively at CB1Rs. Therefore, the potential for direct action of these antagonists at MORs is rarely considered. This study determined if AM-251 and/or rimonabant directly bind and modulate the function of MORs. Surprisingly, AM-251 and rimonabant, but not a third CB1R inverse agonist AM-281, bind with mid-nanomolar affinity to human MORs with a rank order of affinity (K(i)) of AM-251 (251 nM) > rimonabant (652 nM) > AM281 (2135 nM). AM-251 and rimonabant, but not AM-281, also competitively antagonize morphine induced G-protein activation in CHO-hMOR cell homogenates (K(b) = 719 or 1310 nM, respectively). AM-251 and rimonabant block morphine inhibition of cAMP production, while only AM-251 elicits cAMP rebound in CHO-hMOR cells chronically exposed to morphine. AM-251 and rimonabant (10 mg/kg) attenuate morphine analgesia, whereas the same dose of AM-281 produces little effect. Therefore, in addition to high CB1R affinity, AM-251 and rimonabant bind to MORs with mid-nanomolar affinity and at higher doses may affect morphine analgesia via direct antagonism at MORs. Such CB1-independent of these antagonists effects may contribute to reported inconsistencies when CB1/MOR interactions are examined via pharmacological methods in CB1-knockout versus wild-type mice.


Subject(s)
Analgesics, Non-Narcotic/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Narcotic Antagonists/pharmacology , Piperidines/pharmacology , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/agonists , Receptors, Opioid, mu/antagonists & inhibitors , Analgesics, Non-Narcotic/adverse effects , Analgesics, Non-Narcotic/metabolism , Analgesics, Non-Narcotic/therapeutic use , Analgesics, Opioid/adverse effects , Analgesics, Opioid/antagonists & inhibitors , Analgesics, Opioid/metabolism , Analgesics, Opioid/pharmacology , Animals , Binding, Competitive , CHO Cells , Cannabinoid Receptor Agonists/adverse effects , Cannabinoid Receptor Agonists/metabolism , Cannabinoid Receptor Agonists/therapeutic use , Cricetinae , Cricetulus , Drug Inverse Agonism , Humans , Kinetics , Mice , Mice, Inbred Strains , Morpholines/adverse effects , Morpholines/metabolism , Morpholines/pharmacology , Narcotic Antagonists/adverse effects , Narcotic Antagonists/metabolism , Narcotic Antagonists/therapeutic use , Piperidines/adverse effects , Piperidines/metabolism , Piperidines/therapeutic use , Pyrazoles/adverse effects , Pyrazoles/metabolism , Pyrazoles/therapeutic use , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/genetics , Receptor, Cannabinoid, CB2/metabolism , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/genetics , Receptors, Opioid, mu/metabolism , Recombinant Proteins/agonists , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/metabolism , Rimonabant
SELECTION OF CITATIONS
SEARCH DETAIL
...