Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Polym Au ; 4(1): 66-76, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38371731

ABSTRACT

Synthetic polymers, in contrast to small molecules and deterministic biomacromolecules, are typically ensembles composed of polymer chains with varying numbers, lengths, sequences, chemistry, and topologies. While numerous approaches exist for measuring pairwise similarity among small molecules and sequence-defined biomacromolecules, accurately determining the pairwise similarity between two polymer ensembles remains challenging. This work proposes the earth mover's distance (EMD) metric to calculate the pairwise similarity score between two polymer ensembles. EMD offers a greater resolution of chemical differences between polymer ensembles than the averaging method and provides a quantitative numeric value representing the pairwise similarity between polymer ensembles in alignment with chemical intuition. The EMD approach for assessing polymer similarity enhances the development of accurate chemical search algorithms within polymer databases and can improve machine learning techniques for polymer design, optimization, and property prediction.

2.
Proc Natl Acad Sci U S A ; 120(23): e2220021120, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37252959

ABSTRACT

The consistent rise of plastic pollution has stimulated interest in the development of biodegradable plastics. However, the study of polymer biodegradation has historically been limited to a small number of polymers due to costly and slow standard methods for measuring degradation, slowing new material innovation. High-throughput polymer synthesis and a high-throughput polymer biodegradation method are developed and applied to generate a biodegradation dataset for 642 chemically distinct polyesters and polycarbonates. The biodegradation assay was based on the clear-zone technique, using automation to optically observe the degradation of suspended polymer particles under the action of a single Pseudomonas lemoignei bacterial colony. Biodegradability was found to depend strongly on aliphatic repeat unit length, with chains less than 15 carbons and short side chains improving biodegradability. Aromatic backbone groups were generally detrimental to biodegradability; however, ortho- and para-substituted benzene rings in the backbone were more likely to be degradable than metasubstituted rings. Additionally, backbone ether groups improved biodegradability. While other heteroatoms did not show a clear improvement in biodegradability, they did demonstrate increases in biodegradation rates. Machine learning (ML) models were leveraged to predict biodegradability on this large dataset with accuracies over 82% using only chemical structure descriptors.


Subject(s)
Biodegradable Plastics , Polyesters , Polyesters/chemistry , Plastics/chemistry , Polymers , Biodegradation, Environmental , Research Design
3.
ACS Synth Biol ; 10(10): 2689-2704, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34506711

ABSTRACT

Developing potent antimicrobials, and platforms for their study and engineering, is critical as antibiotic resistance grows. A high-throughput method to quantify antimicrobial peptide and protein (AMP) activity across a broad continuum would be powerful to elucidate sequence-activity landscapes and identify potent mutants. Yet the complexity of antimicrobial activity has largely constrained the scope and mechanistic bandwidth of AMP variant analysis. We developed a platform to efficiently perform sequence-activity mapping of AMPs via depletion (SAMP-Dep): a bacterial host culture is transformed with an AMP mutant library, induced to intracellularly express AMPs, grown under selective pressure, and deep sequenced to quantify mutant depletion. The slope of mutant growth rate versus induction level indicates potency. Using SAMP-Dep, we mapped the sequence-activity landscape of 170 000 mutants of oncocin, a proline-rich AMP, for intracellular activity against Escherichia coli. Clonal validation supported the platform's sensitivity and accuracy. The mapped landscape revealed an extended oncocin pharmacophore contrary to earlier structural studies, clarified the C-terminus role in internalization, identified functional epistasis, and guided focused, successful synthetic peptide library design, yielding a mutant with 2-fold enhancement in both intracellular and extracellular activity. The efficiency of SAMP-Dep poises the platform to transform AMP engineering, characterization, and discovery.


Subject(s)
Anti-Bacterial Agents/pharmacology , High-Throughput Nucleotide Sequencing/methods , Protein Engineering , Escherichia coli/drug effects , Microbial Sensitivity Tests , Protein Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...