Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Vet Parasitol ; 168(3-4): 201-11, 2010 Mar 25.
Article in English | MEDLINE | ID: mdl-20031328

ABSTRACT

A quantitative real-time polymerase chain reaction (qPCR) assay using a TaqMan minor groove binder (MGB) probe was developed for the detection of Babesia caballi infection in equids from South Africa. Nine previously published sequences of the V4 hypervariable region of the B. caballi 18S rRNA gene were used to design primers and probes to target unique, conserved regions. The B. caballi TaqMan MGB qPCR assay was shown to be efficient and specific. The detection limit, defined as the concentration at which 95% of positive samples can be detected, was determined to be 0.000114% parasitized erythrocytes (PE). We further evaluated a previously reported Theileria equi-specific qPCR assay and showed that it was able to detect the 12 T. equi 18S rRNA sequence variants previously identified in South Africa. Both qPCR assays were tested on samples from two ponies experimentally infected with either T. equi or B. caballi. The qPCR assays were more sensitive than the indirect fluorescent antibody test (IFAT) and the reverse-line blot (RLB) during the early onset of the disease. The assays were subsequently tested on field samples collected from 41 horses, resident on three stud farms in the Northern Cape Province, South Africa. The IFAT detected circulating T. equi and B. caballi antibody in, respectively, 83% and 70% of the samples. The RLB detected T. equi parasite DNA in 73% of the samples, but none of the samples were positive for B. caballi, although 19 T. equi-positive samples also hybridized to the Babesia genus-specific probe. This could indicate a mixed T. equi and B. caballi infection in these samples, with either the B. caballi parasitaemia at a level below the detection limit of the B. caballi RLB probe, or the occurrence of a novel Babesia genotype or species. In contrast, the qPCR assays correlated fairly well with the IFAT. The B. caballi TaqMan MGB qPCR assay was able to detect B. caballi parasite DNA in 78% of the samples. The T. equi-specific qPCR assay could positively detect T. equi DNA in 80% of the samples. These results suggest that the qPCR assays are more sensitive than the RLB assay for the detection of T. equi and B. caballi infections in field samples.


Subject(s)
Babesiosis/veterinary , Horse Diseases/diagnosis , Horse Diseases/parasitology , Theileriasis/diagnosis , Animals , Babesia/genetics , Babesiosis/diagnosis , DNA, Protozoan/analysis , Genotype , Horses , Male , Polymerase Chain Reaction , RNA, Ribosomal, 18S/genetics , Reproducibility of Results , Sensitivity and Specificity , South Africa , Theileria/genetics
2.
Vet Parasitol ; 159(2): 112-20, 2009 Feb 05.
Article in English | MEDLINE | ID: mdl-19019541

ABSTRACT

A molecular epidemiological survey of the protozoal parasites that cause equine piroplasmosis was conducted using samples collected from horses and zebra from different geographical locations in South Africa. A total of 488 samples were tested for the presence of Theileria equi and/or Babesia caballi using the reverse line blot hybridization assay. Ten percent of the samples hybridized to the Theileria/Babesia genus-specific probe and not to the B. caballi or T. equi species-specific probes, suggesting the presence of a novel species or genotype. The small subunit of rRNA gene (18S; approximately 1600bp) was amplified and sequenced from 33 of these 488 samples. Sequences were compared with published sequences from the public sequence databases. Twelve distinct T. equi and six B. caballi 18S rRNA sequences were identified. Alignments demonstrated extensive sequence variation in the V4 hypervariable region of the 18S rRNA gene within T. equi. Sequence variation was also found in B. caballi 18S rRNA genes, although there was less variation than observed for T. equi. Phylogenetic analysis based on 18S rRNA gene sequences revealed three T. equi clades and two B. caballi clades in South Africa. The extent of sequence heterogeneity detected within T. equi and B. caballi 18S rRNA genes was unexpected since concerted evolution is thought to maintain homogeneity within repeated gene families, including rRNA genes, in eukaryotes. The findings reported here show that careful examination of variants of the 18S rRNA gene of T. equi and B. caballi is required prior to the development of molecular diagnostic tests to detect these parasites in horses. Species-specific probes must be in designed in regions of the gene that are both conserved within and unique to each species.


Subject(s)
Babesia/genetics , Genetic Variation , Horse Diseases/parasitology , RNA, Ribosomal, 18S/genetics , Theileria/genetics , Animals , Babesiosis/epidemiology , Babesiosis/parasitology , Babesiosis/veterinary , Base Sequence , Horse Diseases/epidemiology , Horses , Molecular Sequence Data , Phylogeny , South Africa/epidemiology , Theileriasis/epidemiology , Theileriasis/parasitology
3.
Vector Borne Zoonotic Dis ; 7(4): 585-95, 2007.
Article in English | MEDLINE | ID: mdl-17979540

ABSTRACT

Following an outbreak of autochthonous canine babesiosis in the Netherlands, a request made to veterinarians and the public to collect ticks from companion animals resulted in 4298 ticks submitted between July 2005 and October 2006 to our center. Ticks were identified as Ixodes ricinus adults (2907/4298, 67.6%), Ixodes sp. nymphs (529/4298, 12.3%) and Ixodes sp. larvae (385/4298, 9.0%), I. hexagonus adults (328/4298, 7.6%), Dermacentor reticulatus (72/4298, 1.7%), and several other exotic tick species such as Amblyomma flavomaculatum (formerly Aponomma flavomaculatum), Hyalomma marginatum rufipes, Rhipicephalus sanguineus, and R. turanicus (55/4298, 1.3%). Eight localities were surveyed for the presence of local D. reticulatus, a tick not indigenous to the Netherlands, based on multiple submissions of D. reticulatus ticks from these areas. D. reticulatus was collected from the vegetation in six of these localities, confirming the presence of populations of this tick in the Netherlands. Adult I. ricinus (n=251), I. hexagonus (n=237), and D. reticulatus (n=344) ticks were selected at random and subsequently screened by polymerase chain reaction (PCR) and reverse line blot (RLB) hybridization for the presence of Borrelia, Babesia, Theileria, Anaplasma, Ehrlichia, and Rickettsia species. I. ricinus ticks were infected with Rickettsia helvetica (24.7%), spirochetes belonging to the Borrelia burgdorferi sensu lato group (7.2%), the Ehrlichia-like "Schotii" variant (2.4%), Anaplasma phagocytophilum (1.6%), Babesia sp. (EU1) (1.2%), Babesia divergens (0.4%), and Babesia microti (0.4%). A. phagocytophilum (5.9%) and R. helvetica (0.8%) were also detected in adult I. hexagonus ticks. Spotted fever group Rickettsiae, previously reported as Rickettsia sp. DnS14/RpA4 (14.0%), and Borrelia burgdorferi sensu lato (0.3%) were detected in the D. reticulatus ticks, which appeared to be free from B. canis infection. We concluded that a much broader spectrum of ticks and tick-borne pathogens is present in the Netherlands than previously thought, including several potential zoonotic pathogens.


Subject(s)
Animals, Domestic/microbiology , Animals, Domestic/parasitology , Babesia/isolation & purification , Gram-Negative Bacteria/isolation & purification , Theileria/isolation & purification , Ticks/microbiology , Ticks/parasitology , Animals , Babesia/physiology , Blotting, Southern , Female , Gram-Negative Bacteria/physiology , Ixodidae/microbiology , Ixodidae/parasitology , Male , Mammals/parasitology , Netherlands , Plants/parasitology , Polymerase Chain Reaction , Theileria/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...