Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2313708, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38766930

ABSTRACT

Chiral oligopeptide monolayers are adsorbed on a ferromagnetic surface and their magnetoresistance is measured as a function of the angle between the magnetization of the ferromagnet and the surface normal. These measurements are conducted as a function of temperature for both enantiomers. The angle dependence is found to follow a changing trend with a period of 360°. Quantum simulations reveal that the angular distribution can be obtained only if the monolayer has significant effective spin orbit coupling (SOC), that includes contribution from the vibrations. The model shows that SOC only in the leads cannot reproduce the observed angular dependence. The simulation can reproduce the experiments if it included electron-phonon interactions and dissipation.

2.
J Am Chem Soc ; 145(49): 26791-26798, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37972388

ABSTRACT

Knot-like structures were found to have interesting magnetic properties in condensed matter physics. Herein, we report on topologically chiral molecular knots as efficient spintronic chiral material. The discovery of the chiral-induced spin selectivity (CISS) effect opens the possibility of manipulating the spin orientation with soft materials at room temperature and eliminating the need for a ferromagnetic electrode. In the chiral molecular trefoil knot, there are no stereogenic carbon atoms, and chirality results from the spatial arrangements of crossings in the trefoil knot structures. The molecules show a very high spin polarization of nearly 90%, a conductivity that is higher by about 2 orders of magnitude compared with that of other chiral small molecules, and enhanced thermal stability. A plausible explanation for these special properties is provided, combined with model calculations, that supports the role of electron-electron interaction in these systems.

3.
J Phys Chem Lett ; 14(42): 9377-9384, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37824289

ABSTRACT

The oxygen reduction reaction (ORR) is the key for oxygen-based respiration and the operation of fuel cells. It involves the transmission of two pairs of electrons. We probed what type of interaction between the electrons is required to enable their efficient transfer into the oxygen. We show experimentally that the transfer of the electrons is controlled by the "hidden property" and present a theoretical model suggesting that it is related to coherent phase relations between the two electrons. Using spin polarization electrochemical measurements, with electrodes coated with different thicknesses of chiral coating, we confirm the special relation between the electrons. This relation is destroyed by multiple scattering events that result in the formation of hydrogen peroxide, which indicates a reduction in the ORR efficiency. Another indication for the possible role of coherence is the fluctuations in the reaction efficiency as a function of thickness of the chiral coated electrode.

4.
J Phys Chem Lett ; 14(21): 4941-4948, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37212799

ABSTRACT

We perform low-temperature magneto-conductance measurements on Cu and Au thin films with adsorbed chiral molecules and investigate their phase-coherent transport properties. Upon adsorption of chiral molecules, the spin-orbit coupling strength in Cu decreases and the Au films become ferromagnetic as evident from weak localization and antilocalization data. A theoretical model indicates that anisotropy in the molecular tilt angles, provided that the chiral molecules act as magnetic moments, induces a nonvanishing magnetic exchange interaction, causing changes in the spin-orbit coupling strength in Cu and Au. Our work adds a new viewpoint to the plethora of unique phenomena emerging from chiral molecule adsorption on materials.

5.
J Phys Chem Lett ; 13(50): 11753-11759, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36516240

ABSTRACT

Motivated by experiments which display unusual length and temperature effects for electron transfer in the nanometer length regime, we propose a new approach for describing long-range electron transfer (ET) processes through molecules. We posit that the electron reorganization in the molecules (e.g., the electronic polarization of a macromolecule or organic film by an applied electric potential, or the injected charge generating a dipole moment) should be included in the description. We numerically solve a one-dimensional model for the electron transport, which includes electron-electron interactions explicitly, and we show that it generates a power law distance dependence for electron transport similar to that observed in experiments. The model does not include vibrations explicitly and should be consistent with the weak temperature dependences observed experimentally. This approach emphasizes the need to treat the electronic changes in the molecule(s) more explicitly to understand the behavior.

6.
Proc Natl Acad Sci U S A ; 119(30): e2202650119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35858429

ABSTRACT

Controlled reduction of oxygen is important for developing clean energy technologies, such as fuel cells, and is vital to the existence of aerobic organisms. The process starts with oxygen in a triplet ground state and ends with products that are all in singlet states. Hence, spin constraints in the oxygen reduction must be considered. Here, we show that the electron transfer efficiency from chiral electrodes to oxygen (oxygen reduction reaction) is enhanced over that from achiral electrodes. We demonstrate lower overpotentials and higher current densities for chiral catalysts versus achiral ones. This finding holds even for electrodes composed of heavy metals with large spin-orbit coupling. The effect results from the spin selectivity conferred on the electron current by the chiral assemblies, the chiral-induced spin selectivity effect.


Subject(s)
Electrons , Oxygen , Catalysis , Electrodes , Electron Transport , Oxidation-Reduction , Oxygen/chemistry
7.
J Phys Condens Matter ; 34(19)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35168226

ABSTRACT

Thermoelectric junctions are often made of components of different materials characterized by distinct transport properties. Single material junctions, with the same type of charge carriers, have also been considered to investigate various classical and quantum effects on the thermoelectric properties of nanostructured materials. We here introduce the concept of defect-induced thermoelectric voltage, namely,thermodefect voltage, in graphene nanoribbon (GNR) junctions under a temperature gradient. Our thermodefect junction is formed by two GNRs with identical properties except the existence of defects in one of the nanoribbons. At room temperature the thermodefect voltage is highly sensitive to the types of defects, their locations, as well as the width and edge configurations of the GNRs. We computationally demonstrate that the thermodefect voltage can be as high as 1.7 mV K-1for 555-777 defects in semiconducting armchair GNRs. We further investigate the Seebeck coefficient, electrical conductance, and electronic thermal conductance, and also the power factor of the individual junction components to explain the thermodefect effect. Taken together, our study presents a new pathway to enhance the thermoelectric properties of nanomaterials.

8.
Biochem Biophys Rep ; 28: 101184, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34917778

ABSTRACT

Although unfolding of protein in the liquid state is relatively well studied, its mechanisms in the solid state, are much less understood. We evaluated the reversibility of thermal unfolding of lysozyme with respect to the water content using a combination of thermodynamic and structural techniques such as differential scanning calorimetry, synchrotron small and wide-angle X-ray scattering (SWAXS) and Raman spectroscopy. Analysis of the endothermic thermal transition obtained by DSC scans showed three distinct unfolding behaviors at different water contents. Using SWAXS and Raman spectroscopy, we investigated reversibility of the unfolding for each hydration regime for various structural levels including overall molecular shape, secondary structure, hydrophobic and hydrogen bonding interactions. In the substantially dehydrated state below 37 wt% of water the unfolding is an irreversible process and can be described by a kinetic approach; above 60 wt% the process is reversible, and the thermodynamic equilibrium approach is applied. In the intermediate range of water contents between 37 wt% and 60 wt%, the system is phase separated and the thermal denaturation involves two processes: melting of protein crystals and unfolding of protein molecules. A phase diagram of thermal unfolding/denaturation in lysozyme - water system was constructed based on the experimental data.

9.
Phys Rev E ; 104(5-1): 054110, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34942777

ABSTRACT

Confined systems are usually treated as integer dimensional systems, like two dimensional (2D), 1D, and 0D, by considering extreme confinement conditions in one or more directions. This approach costs piecewise representations, some limitations in confinement interval, and the deviations from the true behaviors, especially when the confinement is neither strong nor weak. In this study, fractional integral representation (FIR) is proposed as a methodology to calculate the infinite summations in statistical thermodynamics for any dimension and confinement values. FIR directly incorporates the dimension as a control variable into calculation procedures and allows us to get solutions valid for the whole confinement and dimension scales, including the fractional ones. We define the dimension of a summation and used it in the proposed FIR to calculate the partition function. The first and the higher-order FIR are introduced and high accuracy results are achieved. FIR is then extended for a generalized function to calculate thermodynamic properties directly from their fundamental expressions based on infinite sums. By using the proposed FIR approach, the thermodynamic properties of a noninteracting Maxwell-Boltzmann gas confined in an elongated rectangular domain are determined. The excess quantities induced by confinement are examined for different confinement scenarios. FIR successfully predicts the true behavior of thermodynamic properties for the whole range of confinement and dimension scales. Defining and controlling the dimension allows designing new types of thermodynamic cycles. Besides the infinite-well potential for the confinement of particles with quadratic and linear dispersion relations, quadratic and quartic confining potentials are also considered to show the success of FIR. The proposed method not only incorporates the dimension into the calculation procedures but also constitutes an application of fractional calculus in statistical thermodynamics. FIR has many potential applications especially for Bose-Einstein condensation phenomenon which inherently contains dimensional transitions.

10.
Pharmaceutics ; 13(11)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34834267

ABSTRACT

The addition of glycerol to protein solutions is often used to hinder the aggregation and denaturation of proteins. However, it is not a generalised practice against chemical degradation reactions. The chemical degradation of proteins, such as deamidation and isomerisation, is an important deteriorative mechanism that leads to a loss of functionality of pharmaceutical proteins. Here, the influence of glycerol on the chemical degradation of a protein and its correlation to glycerol-induced conformational changes is presented. The time-dependent chemical degradation of a pharmaceutical protein, GA-Z, in the absence and presence of glycerol was investigated in a stability study. The effect of glycerol on protein conformation and oligomerisation was characterised using asymmetric field-flow fractionation and small-angle neutron scattering in a wide glycerol concentration range of 0-90% v/v. The results from the stability study were connected to the observed glycerol-induced conformational changes in the protein. A correlation between protein conformation and the protective effect of glycerol against the degradation reactions deamidation, isomerisation, and hydrolysis was found. The study reveals that glycerol induces conformational changes of the protein, which favour a more compact and chemically stable state. It is also shown that the conformation can be changed by other system properties, e.g., protein concentration, leading to increased chemical stability.

11.
J Phys Condens Matter ; 34(2)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34654006

ABSTRACT

Quantum shape effect appears under the size-invariant shape transformations of strongly confined structures. Such a transformation distinctively influences the thermodynamic properties of confined particles. Due to their characteristic geometry, core-shell nanostructures are good candidates for quantum shape effects to be observed. Here we investigate the thermodynamic properties of non-interacting degenerate electrons confined in core-shell nanowires consisting of an insulating core and a GaAs semiconducting shell. We derive the expressions of shape-dependent thermodynamic quantities and show the existence of a new type of quantum oscillations due to shape dependence, in chemical potential, internal energy, entropy and specific heat of confined electrons. We provide physical understanding of our results by invoking the quantum boundary layer concept and evaluating the distributions of quantized energy levels on Fermi function and in state space. Besides the density, temperature and size, the shape per se also becomes a control parameter on the Fermi energy of confined electrons, which provides a new mechanism for fine tuning the Fermi level and changing the polarity of semiconductors.

12.
Nano Lett ; 21(16): 6748-6755, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34351781

ABSTRACT

Mutually interacting magnetic atoms coupled to a superconductor have gained enormous interest due to their potential for the realization of topological superconductivity. Individual magnetic impurities produce states within the superconducting energy gap known as Yu-Shiba-Rusinov (YSR) states. Here, using the tip of a scanning tunneling microscope, we artificially craft spin arrays consisting of an Fe adatom interacting with an assembly of interstitial Fe atoms (IFA) on a superconducting oxygen-reconstructed Ta(100) surface and show that the magnetic interaction between the adatom and the IFA assembly can be tuned by adjusting the number of IFAs in the assembly. The YSR state experiences a characteristic crossover in its energetic position and particle-hole spectral weight asymmetry when the Kondo resonance shows spectral depletion around the Fermi energy. By the help of slave-boson mean-field theory (SBMFT) and numerical renormalization group (NRG) calculations we associate the crossover with the transition from decoupled Kondo singlets to an antiferromagnetic ground state of the Fe adatom spin and the IFA assembly effective spin.

13.
J Phys Chem C Nanomater Interfaces ; 125(18): 9875-9883, 2021 May 13.
Article in English | MEDLINE | ID: mdl-34055128

ABSTRACT

The steady-state charge and spin transfer yields were measured for three different Ru-modified azurin derivatives in protein films on silver electrodes. While the charge-transfer yields exhibit weak temperature dependences, consistent with operation of a near activation-less mechanism, the spin selectivity of the electron transfer improves as temperature increases. This enhancement of spin selectivity with temperature is explained by a vibrationally induced spin exchange interaction between the Cu(II) and its chiral ligands. These results indicate that distinct mechanisms control charge and spin transfer within proteins. As with electron charge transfer, proteins deliver polarized electron spins with a yield that depends on the protein's structure. This finding suggests a new role for protein structure in biochemical redox processes.

14.
Nano Lett ; 21(7): 3026-3032, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33759530

ABSTRACT

Chiral induced spin selectivity is a phenomenon that has been attributed to chirality, spin-orbit interactions, and nonequilibrium conditions, while the role of electron exchange and correlations have been investigated only marginally until very recently. However, as recent experiments show that chiral molecules acquire a finite spin-polarization merely by being in contact with a metallic surface, these results suggest that electron correlations play a more crucial role for the emergence of the phenomenon than previously thought. Here, it is demonstrated that molecular vibrations give rise to molecular charge redistribution and accompany spin-polarization when coupling a chiral molecule to a nonmagnetic metal. The presented theory opens up new routes to construct a comprehensive picture of enantiomer separation.

15.
PLoS One ; 15(11): e0242605, 2020.
Article in English | MEDLINE | ID: mdl-33232370

ABSTRACT

Protein-based drugs often require targeted drug delivery for optimal therapy. A successful strategy to increase the circulation time of the protein in the blood is to link the therapeutic protein with an albumin-binding domain. In this work, we characterized such a protein-based drug, GA-Z. Using asymmetrical flow field-flow fractionation coupled with multi-angle light scattering (AF4-MALS) we investigated the GA-Z monomer-dimer equilibrium as well as the molar binding ratio of GA-Z to HSA. Using small angle X-ray scattering, we studied the structure of GA-Z as well as the complex between GA-Z and HSA. The results show that GA-Z is predominantly dimeric in solution at pH 7 and that it binds to monomeric as well as dimeric HSA. Furthermore, GA-Z binds to HSA both as a monomer and a dimer, and thus, it can be expected to stay bound also upon dilution following injection in the blood stream. The results from SAXS and binding studies indicate that the GA-Z dimer is formed between two target domains (Z-domains). The results also indicate that the binding of GA-Z to HSA does not affect the ratio between HSA dimers and monomers, and that no higher order oligomers of the complex are seen other than those containing dimers of GA-Z and dimers of HSA.


Subject(s)
Chemistry Techniques, Analytical/methods , Recombinant Fusion Proteins/metabolism , Scattering, Small Angle , Serum Albumin, Human/metabolism , Chromatography, Gel , Dimerization , Humans , Models, Molecular , Molecular Weight , Protein Binding , Protein Conformation
16.
Int J Pharm ; 590: 119891, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33010400

ABSTRACT

Freeze-drying is the preferred method to manufacture proteins in their solid state thus the understanding of the relationship between cycle parameters and cake properties remains of great interest. The present study aims to investigate the influence of the freezing conditions in the material properties at different layers throughout the dried structure, in the presence and absence of a protein. Placebo and protein formulations were dried applying different cooling rates: slow, fast and fast cooling with annealing. Non-uniform visual cake appearance, different pore sizes and endothermic events for release of structural water were observed throughout the cake at different freezing rates indicating heterogeneous properties of the dried material likely due to heating gradients during freezing. However, annealing increased the crystallinity and eliminated material inhomogeneities across the cake. The crystalline phase was mainly comprised of δ and hemihydrate mannitol (MHH) distributed at different ratios and influenced by the presence of the protein. The undesired formation of MHH is associated to currently used freezing temperatures or amorphous to crystalline material ratios. Thus, the correlation between the freezing step parameters and resulting material structure is a step forward to provide a better understanding of the freeze-dried cake formation and product quality improvement.


Subject(s)
Mannitol , Drug Compounding , Freeze Drying , Freezing , Phase Transition
17.
J Chromatogr A ; 1633: 461625, 2020 Dec 06.
Article in English | MEDLINE | ID: mdl-33128976

ABSTRACT

Electrical asymmetrical flow field-flow fractionation (EAF4) is an interesting new analytical technique that separates proteins based on size or molecular weight and simultaneously determines the electrical characteristics of each population. However, until now, the research using EAF4 has not been published except for the proof-of-concept in the original publication by Johann et. al. in 2015 [1]. Hence the methods capabilities and optimized conditions need to be further investigated, such as composition of the carrier liquid, pH stability and effect of the electric field strength. The pH instability was observed in the initial method of EAF4 due to the electrolysis products when applied electric field. Therefore, we have investigated and provided a modified method for rapid pH stabilization through additional focusing step with the electric field. Then, the electrical properties such as the zeta-potential and effective net charge of the monomer and oligomers of three different proteins (GA-Z, BSA, and Ferritin) were determined based on their electrophoretic mobility from EAF4. The results showed that there were limitations to the applicability of separation by EAF4 to proteins. Nevertheless, this study shows that EAF4 is an interesting new technique that can examine the zeta-potential of individual proteins in mixtures (or monomers and oligomers) not accessible by other techniques.


Subject(s)
Chemistry Techniques, Analytical/methods , Electrochemical Techniques , Fractionation, Field Flow , Proteins/analysis , Proteins/isolation & purification , Chemistry Techniques, Analytical/instrumentation
18.
ACS Nano ; 14(12): 16624-16633, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33095016

ABSTRACT

Room-temperature, long-range (300 nm), chirality-induced spin-selective electron conduction is found in chiral metal-organic Cu(II) phenylalanine crystals, using magnetic conductive-probe atomic force microscopy. These crystals are found to be also weakly ferromagnetic and ferroelectric. Notably, the observed ferromagnetism is thermally activated, so that the crystals are antiferromagnetic at low temperatures and become ferromagnetic above ∼50 K. Electron paramagnetic resonance measurements and density functional theory calculations suggest that these unusual magnetic properties result from indirect exchange interaction of the Cu(II) ions through the chiral lattice.

19.
Mol Pharm ; 17(9): 3246-3258, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32787275

ABSTRACT

The stability of biologically produced pharmaceuticals is the limiting factor to various applications, which can be improved by formulation in solid-state forms, mostly via lyophilization. Knowledge about the protein structure at the molecular level in the solid state and its transition upon rehydration is however scarce, and yet it most likely affects the physical and chemical stability of the biological drug. In this work, synchrotron small- and wide-angle X-ray scattering (SWAXS) are used to characterize the structure of a model protein, lysozyme, in the solid state and its structural transition upon rehydration to the liquid state. The results show that the protein undergoes distortion upon drying to adopt structures that can continuously fill the space to remove the protein-air interface that may be formed upon dehydration. Above a hydration threshold of 35 wt %, the native structure of the protein is recovered. The evolution of SWAXS peaks as a function of water content in a broad range of concentrations is discussed in relation to the structural changes in the protein. The findings presented here can be used for the design and optimization of solid-state formulations of proteins with improved stability.


Subject(s)
Muramidase/chemistry , Proteins/chemistry , Freeze Drying/methods , Scattering, Small Angle , Synchrotrons , Water/chemistry , X-Ray Diffraction/methods , X-Rays
20.
J Phys Chem Lett ; 10(5): 911-917, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30717591

ABSTRACT

We investigate the magnetic and electronic properties of europium cyclooctatetraene (EuCot) nanowires by means of low-temperature X-ray magnetic circular dichroism (XMCD) and scanning tunneling microscopy (STM) and spectroscopy (STS). The EuCot nanowires are prepared in situ on a graphene surface. STS measurements identify EuCot as an insulator with a minority band gap of 2.3 eV. By means of Eu M5,4 edge XMCD, orbital and spin magnetic moments of (-0.1 ± 0.3)µB and (+7.0 ± 0.6)µB, respectively, were determined. Field-dependent measurements of the XMCD signal at the Eu M5 edge show hysteresis for grazing X-ray incidence at 5 K, thus confirming EuCot as a ferromagnetic material. Our density functional theory calculations reproduce the experimentally observed minority band gap. Modeling the experimental results theoretically, we find that the effective interatomic exchange interaction between Eu atoms is on the order of millielectronvolts, that magnetocrystalline anisotropy energy is roughly half as big, and that dipolar energy is approximately ten times lower.

SELECTION OF CITATIONS
SEARCH DETAIL
...