Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Methods Cell Sci ; 23(1-3): 57-69, 2001.
Article in English | MEDLINE | ID: mdl-11741144

ABSTRACT

The current 'state-of-art' as to chromosome painting in plants is reviewed. We define different situations described as painting so far: i) Genomic in situ hybridisation (GISH) with total genomic DNA to distinguish alien chromosomes on the basis of divergent dispersed repeats, ii) 'Chromosomal in situ suppression' (CISS) hybridisation with chromosome-derived DNA probes and blocking of interchromosomally dispersed repeats by total genomic or C0t-1 DNA in excess, iii) exceptional cases of single chromosome painting by probes containing chromosome-specific dispersed repeats, and iv) Fluorescence in situ hybridisation (FISH) with extended contigs of large insert clones for painting of those chromosomes of a euploid complement which harbour the cloned sequences. While GISH was successfully applied in most plant hybrids and/or their derivatives, painting of individual chromosomes by CISS hybridisations of chromosome-specific DNA probes have so far not revealed convincing results in plants. The reason for this failure and the use of possible alternative approaches are discussed. At least for small plant genomes, painting by large insert single sequence clones provides a promising alternative tool to solve cytogenetic questions, which up to now could not be tackled otherwise. An example of such a painting is described in detail for Arabidopsis thaliana.


Subject(s)
Chromosome Painting/methods , Plants/genetics , Arabidopsis/genetics , Genome, Plant , Genomics/methods
2.
Planta ; 212(4): 556-67, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11525512

ABSTRACT

The carrot (Daucus carota L.) EP3 chitinase was shown to be essential for somatic embryo formation in a carrot mutant cell line. We identified the Arabidopsis thaliana (L.) Heynh. ortholog of the carrot EP3-3 chitinase gene, designated as AtEP3/AtchitIV and analyzed its expression in Arabidopsis by means of reverse transcription-polymerase chain reaction and promoter::beta-glucuronidase and luciferase fusions. As in carrot, the gene is expressed during somatic embryogenesis in "nursing" cells surrounding the embryos but not in embryos themselves. In plants, gene expression is found in mature pollen and growing pollen tubes until they enter the receptive synergid, but not in endosperm and integuments as in carrot. Post-embryonically, expression is found in hydathodes, stipules, root epidermis and emerging root hairs, indicating that the Arabidopsis chitinase may have a function that is not restricted to embryogenesis.


Subject(s)
Arabidopsis/genetics , Chitinases/genetics , Plant Proteins/genetics , Amino Acid Sequence , Apoptosis , Arabidopsis/cytology , Arabidopsis/metabolism , Chitinases/metabolism , Gene Expression Regulation, Plant , Genes, Reporter , Glucuronidase/genetics , Immunohistochemistry , Molecular Sequence Data , Plant Proteins/metabolism , Plant Structures/physiology , Plants, Genetically Modified , Promoter Regions, Genetic , Restriction Mapping , Reverse Transcriptase Polymerase Chain Reaction
3.
Plant J ; 27(1): 49-58, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11489182

ABSTRACT

A molecular cytogenetic map of Medicago truncatula (2n = 2x = 16) was constructed on the basis of a pachytene DAPI karyogram. Chromosomes at this meiotic prophase stage are 20 times longer than at mitotic metaphase, and display a well differentiated pattern of brightly fluorescing heterochromatin segments. We describe here a pachytene karyogram in which all chromosomes can be identified based on chromosome length, centromere position, heterochromatin patterns, and the positions of three repetitive sequences (5S rDNA, 45S rDNA and the MtR1 tandem repeat), visualized by fluorescence in situ hybridization (FISH). We determined the correlation between genetic linkage groups and chromosomes by FISH mapping of bacterial artificial chromosome (BAC) clones, with two to five BACs per linkage group. In the cytogenetic map, chromosomes were numbered according to their corresponding linkage groups. We determined the relative positions of the 20 BACs and three repetitive sequences on the pachytene chromosomes, and compared the genetic and cytological distances between markers. The mapping resolution was determined in a euchromatic part of chromosome 5 by comparing the cytological distances between FISH signals of clones of a BAC contig with their corresponding physical distance, and showed that resolution in this region is about 60 kb. The establishment of this FISH pachytene karyotype, with a far better mapping resolution and detection sensitivity compared to those in the highly condensed mitotic metaphase complements, has created the basis for the integration of molecular, genetic and cytogenetic maps in M. truncatula.


Subject(s)
Chromosome Mapping , Medicago sativa/genetics , Base Sequence , Chromosomes, Artificial, Bacterial , DNA Primers , Genetic Linkage , In Situ Hybridization, Fluorescence , Karyotyping
4.
Plant J ; 28(6): 689-97, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11851915

ABSTRACT

Chromosome painting, that is visualisation of chromosome segments or whole chromosomes based on fluorescence in situ hybridization (FISH) with chromosome-specific DNA probes is widely used for chromosome studies in mammals, birds, reptiles and insects. Attempts to establish chromosome painting in euploid plants have failed so far. Here, we report on chromosome painting in Arabidopsis thaliana (n = 5, 125 Mb C(-1)). Pools of contiguous 113-139 BAC clones spanning 2.6 and 13.3 Mb of the short and the long arm of chromosome 4 (17.5 Mb) were used to paint this entire chromosome during mitotic and meiotic divisions as well as in interphase nuclei. The possibility of identifying any particular chromosome region on pachytene chromosomes and within interphase nuclei using selected BACs is demonstrated by differential labelling. This approach allows us, for the first time, to paint an entire autosome of an euploid plant to study chromosome rearrangements, homologue association, interphase chromosome territories, as well as to identify homeologous chromosomes of related species.


Subject(s)
Arabidopsis/genetics , Chromosome Painting , Chromosomes, Artificial, Bacterial , DNA Probes
5.
Chromosoma ; 109(4): 287-97, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10968257

ABSTRACT

Cre recombinase was used to mediate recombination between a chromosomally introduced loxP sequence in Arabidopsis thaliana (35S-lox-cre) and transferred DNA (T-DNA) originating from Agrobacterium tumefaciens (plox-npt), carrying a single loxP sequence. Constructs were designed for specific Cre-mediated recombination between the two lox sites, resulting in restoration of neomycin phosphotransferase (nptII) expression at the target locus. Kanamycin resistant (Km(r)) recombinants were obtained with an efficiency of about 1% compared with random integration. Molecular analyses confirmed that these were indeed due to recombination between the lox sites of the target and introduced T-DNA. However, polymerase chain reaction analysis revealed that these reflected site-specific integration events only in a minority (4%). The other events were classified as translocations/inversions (71%) or deletions (25%), and were probably caused by site-specific recombination between a randomly integrated T-DNA and the original target locus. We studied some of these events in detail, including a Cre-mediated balanced translocation event, which was characterized by a combination of molecular, genetic and cytogenetic experiments (fluorescence in situ hybridization to spread pollen mother cells at meiotic prophase I). Our data clearly demonstrate that Agrobacterium-mediated transfer of a targeting T-DNA with a single lox site allows the isolation of multiple chromosomal rearrangements, including translocation and deletion events. Given that the complete sequence of the Arabidopsis genome will have been determined shortly this method has significant potential for applications in functional genomics.


Subject(s)
Arabidopsis/genetics , Integrases/metabolism , Recombination, Genetic , Translocation, Genetic , Viral Proteins , Base Sequence , Blotting, Southern , DNA Primers , Escherichia coli/genetics , Polymerase Chain Reaction
6.
Cell ; 100(3): 367-76, 2000 Feb 04.
Article in English | MEDLINE | ID: mdl-10676818

ABSTRACT

We have constructed an integrated cytogenetic map of chromosome arm 4S of Arabidopsis thaliana. The map shows the detailed positions of various multicopy and unique sequences relative to euchromatin and heterochromatin segments. A quantitative analysis of the map positions at subsequent meiotic stages revealed a striking pattern of spatial and temporal variation in chromatin condensation for euchromatin and heterochromatin. For example, the centromere region consists of three domains with distinguishable structural, molecular, and functional properties. We also characterized a conspicuous heterochromatic knob of approximately 700 kb that accommodates a tandem repeat and several dispersed pericentromere-specific repeats. Moreover, our data provide evidence for an inversion event that relocated pericentromeric sequences to an interstitial position, resulting in the heterochromatic knob.


Subject(s)
Arabidopsis/genetics , Centromere , Chromosome Mapping , Heterochromatin , Cytogenetics , In Situ Hybridization, Fluorescence , Meiosis , Polymorphism, Genetic
7.
Plant J ; 13(4): 507-17, 1998 Feb.
Article in English | MEDLINE | ID: mdl-9680996

ABSTRACT

The molecular and cytological organization of the telomeric repeat (TR) and the subtelomeric repeat (TGR1) of tomato were investigated by fluorescence in situ hybridization (FISH) techniques. Hybridization signals on extended DNA fibres, visualized as linear fluorescent arrays representing individual telomeres, unequivocally demonstrated the molecular co-linear arrangement of both repeats. The majority of the telomeres consisted of a TR and a TGR1 region separated by a spacer. Microscopic measurements of the TR and TGR1 signals revealed high variation in length of both repeats, with maximum sizes of 223 and 1330 kb, respectively. A total of 27 different combinations of TR and TGR1 was detected, suggesting that all chromosome ends have their own unique telomere organization. The fluorescent tracks on the extended DNA fibres were subdivided into four classes: (i) TR-spacer-TGR1; (ii) TR-TGR1; (iii) only TR; (iv) only TGR1. FISH to pachytene chromosomes enabled some of the TR/TGR1 groups to be assigned to specific chromosome ends and to interstitial regions. These signals also provided evidence for a reversed order of the TR and TGR1 sites at the native chromosome ends, suggesting a backfolding telomere structure with the TGR1 repeats occupying the most terminal position of the chromosomes. The FISH signals on diakinesis chromosomes revealed that distal euchromatin areas and flanking telomeric heterochromatin remained highly decondensed around the chiasmata in the euchromatic chromosome areas. The rationale for the occurrence and distribution of the TR and TGR1 repeats on the tomato chromosomes are discussed.


Subject(s)
Solanum lycopersicum/genetics , Telomere/genetics , Base Sequence , Chromosome Mapping , Chromosomes/genetics , Chromosomes/ultrastructure , DNA, Plant/genetics , Electrophoresis, Gel, Pulsed-Field , In Situ Hybridization, Fluorescence , Solanum lycopersicum/ultrastructure , Repetitive Sequences, Nucleic Acid
8.
Chromosoma ; 107(2): 80-6, 1998 May.
Article in English | MEDLINE | ID: mdl-9601976

ABSTRACT

The cell cycle-dependent spatial position, morphology and activity of the four nucleolar organising regions (NORs) of the Petunia hybrida cultivar Mitchell and the inbred line V26 have been analysed. Application of the silver staining technique and fluorescence in situ hybridisation on fixed root-tip material revealed that these interspecific hybrids possess four NORs of which only those of chromosome 2 are active during interphase, which implies that the NOR activity is not of parental origin. However, at the end of mitosis, activity of all NOR regions could be detected, suggesting that the high demand for ribosomes at this stage of the cell cycle requires temporal activity of all NORs. Using actin DNA probes as markers in fluorescence in situ hybridisation experiments enabled the identification of the individual petunia chromosomes.


Subject(s)
Cell Cycle/genetics , In Situ Hybridization, Fluorescence , Nucleolus Organizer Region/physiology , Plants/genetics , Silver Staining , Chromosomes/genetics , In Situ Hybridization, Fluorescence/methods , Ribosomes/genetics , Silver Staining/methods
9.
Plant Cell ; 8(5): 823-830, 1996 May.
Article in English | MEDLINE | ID: mdl-12239403

ABSTRACT

Using fluorescence in situ hybridization (FISH) with metaphase preparations, we localized a 4-kb single-copy T-DNA sequence in a group of petunia transformants. The selected T-DNAs previously had been shown to be linked to the phenotypic marker FI on chromosome II. Linkage analysis had revealed that recombination around the FI locus is suppressed in a wide cross relative to an inbred recombination assay. The localization of six FI-linked T-DNAs and the FI locus itself, using FISH, revealed a number of aspects of recombination in petunia: (1) the central region of chromosome II showed at least a 10-fold suppression of recombination in wide crosses relative to the distal region; (2) recombination in wide hybrids over two-thirds of the chromosome was extremely low; and (3) recombination between completely homologous chromosomes in an inbred cross also was suppressed in the central region. In addition, the T-DNAs were not evenly distributed along the chromosome, suggesting a possible preference for a distal position for T-DNA integration. Implications for such a preference are discussed.

10.
Plant J ; 9(3): 421-30, 1996 Mar.
Article in English | MEDLINE | ID: mdl-8919917

ABSTRACT

A technique to detect DNA sequences on extended DNA fibres (EDF) prepared from interphase nuclei from tomato (Lycopersicon esculentum) and Arabidopsis thaliana leaves by fluorescence in situ hybridization (FISH) is described. Three nuclear lysis procedures have been tested for their ability to decondense chromatin and to generate highly extended intact DNA fibres on microscopic slides. DNA probes of various sizes have been used in FISH experiments to EDFs to establish the resolution and sensitivity of the technique. The fluorescent signals of a 5S rDNA probe hybridized to tomato EDFs revealed continuous strings of about 200 microns, that corresponded to a molecular size of about 660 kb. In A. thaliana, a contig of three cosmids spanning a genomic region with a total length of about 89 kb was analysed. By means of multicolour hybridization the physical positions of the cosmids were visualized as red and green fluorescence strings with overlapping regions in yellow. Comparison of the length of the fluorescent signals with the molecular data revealed a stretching degree of the DNA fibres at 3.27 kb microns-1, which is close to the Watson-Crick DNA length estimate of 2.9 kb microns-1. Other experiments on small size molecular probes with both lambda clones (13.5-17 kb insert sizes) and plasmids (4.2 and 5 kb) in a contig of A. thaliana, and the 5S rDNA region in tomato showed close agreement with molecular data. The lower limit of the detection, which was established in a hybridization experiment with two DNA probes from the 45S ribosomal gene on extended fibres of tomato, was about 0.7 kb. Consistent patterns of alternating fluorescent red and green spots were obtained reflecting the tandemly repeated arrangement of the 18S and 25S ribosomal sequences. On the basis of the microscopic distance between these hybridization spots the size of the ribosomal unit was estimated at 8.2 kb. This implies a drastic improvement of high-resolution physical mapping of DNA sequences by FISH on plant DNA.


Subject(s)
Arabidopsis/genetics , Chromosome Mapping/methods , DNA, Plant/genetics , Cloning, Molecular , Cosmids , DNA Probes , Genes, Plant , In Situ Hybridization, Fluorescence , Solanum lycopersicum/genetics , Plasmids , Repetitive Sequences, Nucleic Acid
11.
Plant Cell Rep ; 8(2): 67-70, 1989 Feb.
Article in English | MEDLINE | ID: mdl-24232986

ABSTRACT

Isozyme analyses were carried out on protein extracts of non-embryogenic and embryogenic callus fromZea mays L., using polyacrylamide gel electrophoresis. We examined the isozyme patterns of glutamate dehydrogenase, peroxidase and acid phosphatase for their utility as biochemical markers of maize embryogenic callus cultures. These isozyme systems were also used to examine possible correlations between isozymes and different stages of regeneration. The zymograms of peroxidase and glutamate dehydrogenase differed for non-embryogenic and embryogenic callus. Further, some isozymes were correlated with the morphological appearance of the tissue while others seemed to be involved with the duration of the culture period. Using the same enzyme assays on fresh tissue samples we were able to test the three enzymes as cytochemical markers in embryogenic cultures. Glutamate dehydrogenase proved to be most successful to discriminate embryogenic from non-embryogenic cells.

12.
Plant Cell Rep ; 6(3): 212-5, 1987 Jun.
Article in English | MEDLINE | ID: mdl-24248655

ABSTRACT

Maize anthers have been induced on modified N6 medium to produce embryoids. Different stages from the cultures were sampled and prepared for microscopical examination. The microspores at the onset of culture were in an early developmental stage, with the nucleus and numerous organelles centred in the middle, surrounded by many small vacuoles with a lipid content. The binuclear pollen grains contained small vesicles and much starch. The partially condensed vegetative nucleus indicated participation of the vegetative component in the formation of multicellular pollen grains (MPGs). Several MPGs have been observed which differed in morphology. We suggest, on the basis of these ultrastructural observations, that in maize mainly the vegetative cell contributes to the MPG which further develops directly into embryoids.

SELECTION OF CITATIONS
SEARCH DETAIL
...