Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 30(43): 435702, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30239333

ABSTRACT

Switchable atomic displacements generate electric dipole moments in ferroelectric materials utilized in many contemporary devices. Lead titanate, a perovskite oxide with formula PbTiO3, has been referred to as a textbook example of a prototype displacive ferroelectric and is a testing platform of widely used models of piezoelectric response of complex solid-solutions. PbTiO3 has been addressed by experimental and computational studies, often with apparently conflicting conclusions. To date, hydrostatic pressure experiments have been interpreted in terms of a model in which the dipole moments gradually diminish with increasing pressure until a transition to a cubic phase, characterized by a zero average dipole moment, occurs. The model unrealistically assumes an even compression of the crystal. Here we show by high-pressure neutron powder diffraction measurements that a fast and slow shrinkage of 12-oxygen cages around Pb and octahedra around Ti, respectively, takes place. A phase diagram consolidating earlier and present results is given.

2.
J Phys Condens Matter ; 27(2): 025901, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25531118

ABSTRACT

A single crystal of lead-zirconate-titanate, composition Pb(Zr0.80Ti0.20)O3, was studied by polarized-Raman scattering as a function of temperature. Raman spectra reveal that the local structure deviates from the average structure in both ferroelectric and paraelectric phases. We show that the crystal possesses several, inequivalent complex domain boundaries which show no sign of instability even 200 K above the ferroelectric-to-paraelectric phase transition temperature TC. Two types of boundaries are addressed. The first boundary was formed between ferroelectric domains below TC. This boundary remained stable up to the highest measurement temperatures, and stabilized the domains so that they had the same orientation after repeated heating and cooling cycles. These domains transformed normally to the cubic paraelectric phase. Another type of boundary was formed at 673 K and exhibited no signs of instability up to 923 K. The boundary formation was reversible: it formed and vanished between 573 and 673 K during heating and cooling, respectively. A model in which the crystal is divided into thin slices with different Zr/Ti ratios is proposed. The physical mechanism behind the thermal-stress-induced structural changes is related to the different thermal expansion of the slices, which forces the domain to grow similarly after each heating and cooling cycle. The results are interesting for non-volatile memory development, as it implies that the original ferroelectric state can be restored after the material has been transformed to the paraelectric phase. It also suggests that a low-symmetry structure, stable up to high temperatures, can be prepared through controlled deposition of layers with desired compositions.

3.
Rev Sci Instrum ; 85(8): 083901, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25173278

ABSTRACT

Piezoelectric materials respond to external stimuli by adjusting atomic positions. In solid-solutions, the changes occurring in atomic scale are very complex since the short- and long-range order are different. Standard methods used in diffraction data analysis fail to model the short-range order accurately. Pressure-induced cation displacements in ferroelectric Pb(Zr(0.45)Ti(0.55))O3 perovskite oxide are modeled by starting from a short-range order. We show that the model gives the average structure correctly and properly describes the local structure. The origin of the microstrain in lead zirconate titanate is the spatially varying Zr and Ti concentration and atomic distances, which is taken into account in the simulation. High-pressure neutron powder diffraction and simulation techniques are applied for the determination of atomic positions and bond-valences as a function of pressure. Under hydrostatic pressure, the material loses its piezoelectric properties far before the transition to the cubic phase takes place. The total cation valence +6 is preserved up to 3.31 GPa by compensating the increasing B-cation valence by decreasing Pb-displacement from the high-symmetry position. At 3.31 GPa, Pb-displacement is zero and the material is no more ferroelectric. This is also the pressure at which the Pb-valence is minimized. The average structure is still tetragonal. The model for microstrain predicts that the transition occurs over a finite pressure range: Pb-displacements are spatially varying and follow the distribution of Zr and Ti ions.

4.
J Phys Chem B ; 113(23): 7967-72, 2009 Jun 11.
Article in English | MEDLINE | ID: mdl-19441804

ABSTRACT

The best piezoelectric materials are solid solutions in the vicinity of the steep morphotropic phase boundary (MPB) separating rhombohedral and tetragonal phases in the composition-temperature plane. A classical example is the lead zirconate titanate [Pb(Zr(x)Ti(1-x))O(3), PZT] system, with x approximately 0.52, where the two phases are separated by a boundary extending from the lowest temperatures up to several hundred degrees. The origin of the boundary has been under keen studies for 40 years. Recent interest is largely due to the need to develop new, lead-free piezoelectrics, for which a natural starting point is to understand the properties of the present systems. Here, we demonstrate, through high-pressure (up to 8 GPa) neutron powder diffraction experiments and density functional theory computations on lead titanate (PbTiO(3), PT), that it is the competition between two factors which determines the MPB. The first is the oxygen octahedral tilting, giving advantage for the rhombohedral R3c phase, and the second is the entropy, which in the vicinity of the MPB favors the tetragonal phase above 130 K. If the two factors are in balance over a large temperature range, a steep phase boundary results in the pressure-temperature plane.

5.
J Phys Chem B ; 112(21): 6521-35, 2008 May 29.
Article in English | MEDLINE | ID: mdl-18433161

ABSTRACT

Atomic scale structure has a central importance for the understanding of functional properties of ferroelectrics. The X-ray and neutron diffraction studies used for the average symmetry determination of lead zirconate titanate [Pb(ZrxTi(1- x))O3, PZT] ceramics and powders are reviewed. The results obtained through two frequently used local probes, transmission electron microscopy (TEM) combined with electron diffraction (ED) and Raman scattering measurements, are summarized. On the basis of these studies, structural trends as a function of composition x and temperature are outlined. There are two distinguished intrinsic structural features, (i) lead-ion shifts and (ii) local structural distortions related to different B cations and the spatial composition variation of x, which have a pronounced effect on the functional properties of PZT. Particular attention is paid to the morphotropic phase boundary (MPB) compositions for which a large number of different structural models have been proposed. Earlier symmetry considerations show that the monoclinic phase cannot serve as a continuous bridge between tetragonal and rhombohedral phases. This suggests that the two-phase coexistence has an important role for the piezoelectric properties. Near the MPB, the extrinsic contribution to piezoelectricity includes pressure (or electric-field)-induced changes in phase fractions and domain wall motion. It was recently shown that the domain contribution is crucial for the electromechanical properties of PZT in the vicinity of the MPB. The dependence of domain widths on crystal size and shape should also be properly accounted for when TEM/ED measurements complement X-ray and/or neutron diffraction experiments. The structure-piezoelectric property relations are summarized.

6.
J Phys Chem B ; 111(17): 4287-90, 2007 May 03.
Article in English | MEDLINE | ID: mdl-17408259

ABSTRACT

Our first-principles computations show that the ground state of PbTiO3 under hydrostatic pressure transforms discontinuously from P4mm to R3c at 9 GPa. Spontaneous polarization decreases with increasing pressure so that the R3c phase transforms to the centrosymmetric Rc phase at around 27 GPa. The first-order phase transition between the tetragonal and rhombohedral phases is exceptional since there is no evidence for a bridging phase. The essential feature of the R3c and Rc phases is that they allow the oxygen octahedron to increase its volume VB at the expense of the cuboctahedral volume VA around a Pb ion. This is further supported by the fact that neither the R3m nor Cm phase, which keep the VA/VB ratio constant, is a ground state within the pressure range between 0 and 40 GPa. Thus, tetragonal strain is dominant up to 9 GPa, whereas at higher pressures, efficient compression through oxygen octahedra tilting plays the central role for PbTiO3. Previously predicted pressure induced colossal enhancement of piezoelectricity in PbTiO3 corresponds to unstable Cm and R3m phases. This suggests that the phase instability, in contrast to the polarization rotation, is responsible for the large piezoelectric properties observed in systems like Pb(Zr,Ti)O3 in the vicinity of the morphotropic phase boundary.

7.
Inorg Chem ; 44(25): 9267-78, 2005 Dec 12.
Article in English | MEDLINE | ID: mdl-16323908

ABSTRACT

The crystal symmetries of lead hafnate titanate (Pb(HfxTi1-x)O3, PHT) powders with 0.10

SELECTION OF CITATIONS
SEARCH DETAIL
...