Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
2.
Biosens Bioelectron ; 163: 112300, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32568698

ABSTRACT

We present a rapid and quantitative point-of-care (PoC) system based on a smartphone application that is capable of accurately tracking the flow of red blood cells (RBCs) through a no-reaction lateral flow assay (nrLFA) device. Utilizing only the camera feed from the smartphone and built-in image processing, the nrLFA is identified and RBC fluid flow distances and rates are recorded in parallel with the test without the need of any custom hardware or enclosure. We demonstrated the application by first measuring and then calculating hematocrit (Hct) values of whole blood samples with nominal content of 28%, 35%, 40%, and 45% Hct on the nrLFA platform. The PoC system was able to accurately measure (to within 1% Hct of nominal values) whole blood Hct in ~10-20 s after sample dispensing.


Subject(s)
Biosensing Techniques , Mobile Applications , Hematocrit , Point-of-Care Systems , Smartphone
3.
ACS Nano ; 4(1): 153-8, 2010 Jan 26.
Article in English | MEDLINE | ID: mdl-20000439

ABSTRACT

A promising route for the synthesis of large-area graphene, suitable for standard device fabrication techniques, is the sublimation of silicon from silicon carbide at elevated temperatures (>1200 degrees C). Previous reports suggest that graphene nucleates along the (110n) plane, known as terrace step edges, on the silicon carbide surface. However, to date, a fundamental understanding of the nucleation of graphene on silicon carbide is lacking. We provide the first direct evidence that nucleation of epitaxial graphene on silicon carbide occurs along the (110n) plane and show that the nucleated graphene quality improves as the synthesis temperature is increased. Additionally, we find that graphene on the (110n) plane can be significantly thicker than its (0001) counterpart and appears not to have a thickness limit. Finally, we find that graphene along the (110n) plane can contain a high density of structural defects, often the result of the underlying substrate, which will undoubtedly degrade the electronic properties of the material. Addressing the presence of non-uniform graphene that may contain structural defects at terrace step edges will be key to the development of a large-scale graphene technology derived from silicon carbide.

4.
Nano Lett ; 9(8): 2873-6, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19719106

ABSTRACT

We report a direct correlation between carrier mobility and Raman topography of epitaxial graphene (EG) grown on silicon carbide (SiC). We show the Hall mobility of material on SiC(0001) is highly dependent on thickness and monolayer strain uniformity. Additionally, we achieve high mobility epitaxial graphene (18100 cm(2)/(V s) at room temperature) on SiC(0001) and show that carrier mobility depends strongly on the graphene layer stacking.

5.
Dalton Trans ; (37): 5031-6, 2008 Oct 07.
Article in English | MEDLINE | ID: mdl-18802616

ABSTRACT

The synthesis of several (salen)MnN3 complexes in good yields and purities were achieved by the reaction of manganese(III) acetate and H2salen, followed by metathesis of the remaining acetate ligand with an aqueous solution of NaN3. The X-ray structures of two derivatives, where salen=N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-ethylenediamine and N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexenediamine respectively, were determined. The complexes were shown to be monomeric 5-coordinate derivatives displaying a distorted square pyramidal geometry, and to be d4 high-spin derivatives by solution magnetic moment measurements using the Evans method. Binding studies of the (salen)MnN3 derivatives with added azide ions or cyclohexene oxide showed these complexes to have modest affinities for binding a sixth ligand. These observations are used to rationalize the low activity exhibited by manganese(III) complexes relative to their chromium(III) and cobalt(III) analogs for serving as catalysts for the copolymerization of carbon dioxide and epoxides.

6.
Inorg Chem ; 47(11): 4977-87, 2008 Jun 02.
Article in English | MEDLINE | ID: mdl-18439001

ABSTRACT

Five-coordinate manganese(III) complexes of N, N'-bis(trifluoroacetylacetone)-1,2-ethylenediimine (tfacacen) have been synthesized and structurally characterized by X-ray crystallography. The presence of the electron-withdrawing -CF3 substituents enhances the electrophilicity of the metal center in these (tfacacen)MnX (X=Cl, N3, NCO, NCS) derivatives when compared with their (acacen)MnX (acacen=N, N'-bis(acetylacetone)-1,2-ethylenediimine) analogs. This is demonstrated by the increased propensity of the Mn(III) center in the tfacacen complexes to bind a sixth ligand. Binding studies were performed utilizing the upsilonN3 stretching frequency in (tfacacen)MnN3, which is sensitive to the coordination of a ligand at the vacant axial site. Of importance, cyclohexene oxide was shown to readily bind to (tfacacen)MnN3, thereby providing an opportunity for directly monitoring the dependence of the epoxide ring-opening process on the metal complex concentration. In this instance, as has been amply demonstrated in the (salen)CrX case, the ring opening of cyclohexene oxide was found to be second-order in [(tfacacen)MnN3], with an activation energy of 71.0+/-6.0 kJ/mol. In the presence of strongly coordinating anions or amine bases, the rate of epoxide ring opening by (tfacacen)MnN3 was greatly retarded. The manganese cyanate and thiocyanate complexes were examined in an effort to develop other initiators for epoxide ring opening which provide readily accessible infrared spectroscopic probes. Indeed, the thiocyanate ligand was found to be well-suited for monitoring the epoxide ring-opening reaction by infrared spectroscopy.

7.
Article in English | MEDLINE | ID: mdl-19126494

ABSTRACT

Large-size and high-quality ReCa(4)O(BO(3))(3) (ReCOB, Re = rare earth) single crystals were grown by the Czochralski pulling method. In this work, the electrical properties were investigated at room temperature and elevated temperature for YCa(4)O(BO(3))(3) (YCOB). The dielectric permittivity, piezoelectric strain coefficient, and electromechanical coupling were found to be on the order of 11, 6.5 pC/N, and 12.5%, respectively, with a high piezoelectric voltage coefficient around 0.067 Vm/N. The electrical resistivity of YCOB was found to be 2 x 10(8) Ohm.m at 800 degrees C, with Q values of 4,500 at 950 degrees C. The frequency/temperature coefficient of YCOB was found to be -75 to -85ppm/K in the temperature range of 30 to 950 degrees C, depending on the crystal orientations. Together with their temperature-independent properties, ReCOB crystals are promising candidates for sensing applications at elevated temperatures.


Subject(s)
Electrochemistry/instrumentation , Electrochemistry/methods , Hot Temperature , Yttrium/chemistry , Borates/chemistry , Calcium Compounds/chemistry , Crystallization , Electric Impedance , Metals, Rare Earth/chemistry , Oxygen Compounds/chemistry , Transducers
8.
Inorg Chem ; 46(15): 5967-78, 2007 Jul 23.
Article in English | MEDLINE | ID: mdl-17579473

ABSTRACT

Schiff base complexes of the form (acacen)Mn(III)X (acacen = N,N'-bis(acetylacetone)-1,2-ethylenediimine), where X = OAc, Cl, or N(3), have been evaluated for their ability to couple CO(2) and cyclohexene oxide in the presence of a variety of cocatalysts to provide cyclic or polycarbonates. These complexes proved to be ineffective at catalyzing this process; however, valuable information related to the coordination chemistry of these manganese Schiff bases was elucidated. Of importance, mechanistic findings as revealed by comprehensive studies involving structurally related (salen)CrX and (salen)CoX complexes strongly support the requirement of six-coordinate metal species for the effective copolymerization of CO(2) and epoxides. In the case of these Mn(III) complexes, it was determined that in chloroform or toluene solution a five-coordinate species was greatly favored over a six-coordinate species even in the presence of 20 equiv or more of various Lewis bases. Significantly epoxide monomers such as propylene oxide and cyclohexene oxide displayed no tendency to bind to these (acacen)MnX derivatives, even when used as solvents. Only in the case of excessive quantities of heterocyclic amines such as pyridine, DMAP, and DBU was spectral evidence of a six-coordinate Mn derivative observed in solution. X-ray crystal structures are provided for many of the complexes involved in this study, including the one-dimensional polymeric structures of [(acacen)MnOAc x 2H(2)O](n), [(acacen)MnN(3)](n) (mu(1,3)-N(3)), and a rare mixed bridging species [(acacen)MnN(3)](n) (mu(1,3)-N(3)/mu(1,1)-N(3)). In addition, a structure was obtained in which the unit cell contains both a (acacen)MnN(3)(DMAP) and a (acacen)MnN(3) species.

SELECTION OF CITATIONS
SEARCH DETAIL
...