Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Med ; 23(10): 1158-1166, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28846099

ABSTRACT

Growth differentiation factor 15 (GDF15; also known as MIC-1) is a divergent member of the TGF-ß superfamily and is associated with body-weight regulation in humans and rodents. However, the cognate receptor of GDF15 is unknown. Here we show that GDF15 binds specifically to GDNF family receptor α-like (GFRAL) with high affinity, and that GFRAL requires association with the coreceptor RET to elicit intracellular signaling in response to GDF15 stimulation. We also found that GDF15-mediated reductions in food intake and body weight of mice with obesity were abolished in GFRAL-knockout mice. We further found that GFRAL expression was limited to hindbrain neurons and not present in peripheral tissues, which suggests that GDF15-GFRAL-mediated regulation of food intake is by a central mechanism. Lastly, given that GDF15 did not increase energy expenditure in treated mice with obesity, the anti-obesity actions of the cytokine are likely driven primarily by a reduction in food intake.


Subject(s)
Eating/drug effects , Energy Metabolism/drug effects , Glial Cell Line-Derived Neurotrophic Factor Receptors/drug effects , Growth Differentiation Factor 15/pharmacology , Obesity/metabolism , Weight Loss/drug effects , Animals , Eating/genetics , Energy Metabolism/genetics , Flow Cytometry , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , HEK293 Cells , Humans , In Vitro Techniques , Mice , Mice, Knockout , Rats , Rats, Sprague-Dawley , Surface Plasmon Resonance , Weight Loss/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...