Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Environ Assess Manag ; 10(4): 543-54, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25044203

ABSTRACT

For the past decade, considerable research has been conducted at a series of small lakes receiving treated liquid effluent containing elevated selenium (Se) from the Key Lake uranium (U) milling operation in northern Saskatchewan, Canada. Several studies related to this site, including field collections of water, sediment, and biota (biofilm and/or periphyton, invertebrates, fish, and birds), semicontrolled mesocosm and in situ caging studies, and controlled laboratory experiments have recently been published. The aim of the present investigation was to compile the site-specific information obtained from this multidisciplinary research into an integrative perspective regarding the influence of Se speciation on biogeochemical cycling and food web transfer of Se in coldwater ecosystems. Within lakes, approximately 50% of sediment Se was in the form of elemental Se, although this ranged from 0% to 81% among samples. This spatial variation in elemental Se was positively correlated with finer particles (less sand) and percent total organic C content in sediments. Other Se species detected in sediments included selenosulfides, selenite, and inorganic metal selenides. In contrast, the major Se form in sediment-associated biofilm and/or periphyton was an organoselenium species modeled as selenomethionine (SeMet), illustrating the critical importance of this matrix in biotransformation of inorganic Se to organoselenium compounds and subsequent trophic transfer to benthic invertebrates at the base of the food web. Detritus displayed a Se speciation profile intermediate between sediment and biofilm, with both elemental Se and SeMet present. In benthic detritivore (chironomid) larvae and emergent adults, and in foraging and predatory fishes, SeMet was the dominant Se species. The proportion of total Se present as a SeMet-like species displayed a direct nonlinear relationship with increasing whole-body Se in invertebrates and fishes, plateauing at approximately 70% to 80% of total Se as a SeMet-like species. In fish collected from reference lakes, a selenocystine-like species was the major Se species detected. Similar Se speciation profiles were observed using 21-day mesocosm and in situ caging studies with native small-bodied fishes, illustrating the efficient bioaccumulation of Se and use of these semicontrolled approaches for future research. A simplified conceptual model illustrating changes in Se speciation through abiotic and biotic components of lakes was developed, which is likely applicable to a wide range of northern industrial sites receiving elevated Se loading into aquatic ecosystems.


Subject(s)
Ecosystem , Environmental Monitoring , Geological Phenomena , Lakes/chemistry , Selenium/chemistry , Selenium/metabolism , Animals , Birds/metabolism , Canada , Fishes/metabolism , Models, Theoretical , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism
2.
Environ Toxicol Chem ; 32(12): 2836-48, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23996699

ABSTRACT

An in situ caging study was conducted downstream of a metal mine in northern Canada to determine the significance of surface water versus sediment exposure on selenium (Se) bioaccumulation in the benthic invertebrate Chironomus dilutus. Laboratory-reared C. dilutus larvae were exposed to either site-specific whole-sediment and surface water or surface water only for 10 d at sites with differing sediment and Se characteristics. Results showed elevated whole-body Se concentrations in C. dilutus larvae when exposed to sediment and water, compared with larvae exposed to Se in the surface water only at concentrations ranging from <1 µg Se/L to 12 µg Se/L. In response to these findings, a second in situ experiment was conducted to investigate the importance of dietary Se (biofilm and detritus) versus whole-sediment-exposure pathways. Larvae exposed to sediment detritus had the highest Se concentrations after 10 d of exposure (15.6 ± 1.9 µg/g dry wt) compared with larvae exposed to whole-sediment (12.9 ± 1.7 µg/g dry wt) or biofilm (9.9 ± 1.6 µg/g dry wt). Detritus and biofilm appear to be enriched sources of organic Se, which are more bioaccumulative than inorganic Se. Midge larvae from the reference treatment contained elevated concentrations of diselenides (i.e., selenocystine), while larvae from the biofilm treatment had the highest concentrations of selenomethionine-like compounds, which may be a biomarker of elevated Se exposures derived from anthropogenic sources. Whenever possible, Se concentrations in the organic fraction of sediment should be measured separately from whole-sediment Se and used for more accurate ecological risk assessments of potential Se impacts on aquatic ecosystems.


Subject(s)
Chironomidae/metabolism , Food Chain , Geologic Sediments/chemistry , Selenium/metabolism , Water Pollutants, Chemical/metabolism , Water/chemistry , Animals , Cystine/analogs & derivatives , Cystine/metabolism , Lakes , Larva/metabolism , Organoselenium Compounds/metabolism , Saskatchewan , Selenium/chemistry , Selenomethionine/metabolism , Water Pollutants, Chemical/chemistry
3.
Chemosphere ; 90(2): 449-58, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23000048

ABSTRACT

Oil sands process-affected waters (OSPWs) produced during the extraction of bitumen at the Athabasca Oil Sands (AOS) located in northeastern Alberta, Canada, are toxic to many aquatic organisms. Much of this toxicity is related to a group of dissolved organic acids known as naphthenic acids (NAs). Naphthenic acids are a natural component of bitumen and are released into process water during the separation of bitumen from the oil sand ore by a caustic hot water extraction process. Using laboratory microcosms as an analogue of a proposed constructed wetland reclamation strategy for OSPW, we evaluated the effectiveness of these microcosms in degrading NAs and reducing the aquatic toxicity of OSPW over a 52-week test period. Experimental manipulations included two sources of OSPW (one from Syncrude Canada Ltd. and one from Suncor Energy Inc.), two different hydraulic retention times (HRTs; 40 and 400 d), and increased nutrient availability (added nitrate and phosphate). Microcosms with a longer HRT (for both OSPWs) showed higher reductions in total NAs concentrations (64-74% NAs reduction, p<0.05) over the test period, while nutrient enrichment appeared to have little effect. A 96 h static acute rainbow trout (Oncorhynchus mykiss) bioassay showed that the initial acute toxicity of Syncrude OSPW (LC50=67% v/v) was reduced (LC50>100% v/v) independent of HRT. However, EC20s from separate Microtox® bioassays were relatively unchanged when comparing the input and microcosm waters at both HRTs over the 52-week study period (p>0.05), indicating that some sub-lethal toxicity persisted under these experimental conditions. The present study demonstrated that given sufficiently long HRTs, simulated wetland microcosms containing OSPW significantly reduced total NAs concentrations and acute toxicity, but left behind a persistent component of the NAs mixture that appeared to be associated with residual chronic toxicity.


Subject(s)
Carboxylic Acids/analysis , Environmental Restoration and Remediation/methods , Oil and Gas Fields , Water Pollutants, Chemical/analysis , Wetlands , Alberta
4.
Chemosphere ; 89(3): 274-9, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22608132

ABSTRACT

A lake system in northern Saskatchewan receiving treated metal mine and mill effluent contains elevated levels of selenium (Se). An important step in the trophic transfer of Se is the bioaccumulation of Se by benthic invertebrates, especially primary consumers serving as a food source for higher trophic level organisms. Chironomids, ubiquitous components of many northern aquatic ecosystems, were sampled at lakes downstream of the milling operation and were found to contain Se concentrations ranging from 7 to 80 mgkg(-1)dry weight. For comparison, laboratory-reared Chironomus dilutus were exposed to waterborne selenate, selenite, or seleno-DL-methionine under laboratory conditions at the average total Se concentrations found in lakes near the operation. Similarities in Se localization and speciation in laboratory and field chironomids were observed using synchrotron-based X-ray fluorescence (XRF) imaging and X-ray absorption spectroscopy (XAS). Selenium localized primarily in the head capsule, brain, salivary glands and gut lining, with organic Se species modeled as selenocystine and selenomethionine being the most abundant. Similarities between field chironomids and C. dilutus exposed in the laboratory to waterborne selenomethionine suggest that selenomethionine-like species are most readily accumulated, whether from diet or water.


Subject(s)
Chironomidae/chemistry , Selenium/chemistry , Animals , Chironomidae/metabolism , Food Chain , Industrial Waste/adverse effects , Lakes , Larva/metabolism , Mining , Saskatchewan , Selenic Acid , Selenium/metabolism , Selenium Compounds/metabolism , Selenomethionine/metabolism , Sodium Selenite/metabolism , Spectrometry, X-Ray Emission , Tissue Distribution , Water Pollutants, Chemical/metabolism , X-Ray Absorption Spectroscopy
5.
Environ Toxicol Chem ; 30(10): 2292-9, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21766323

ABSTRACT

The objective of the present study was to describe the uptake and elimination kinetics of selenium (Se) administered in the forms of selenate, selenite, and selenomethionine (seleno-DL-methionine) in different life stages of the midge Chironomus dilutus, and to determine the relationship between Se bioavailability and Se speciation using X-ray absorption spectroscopy (XAS). Midge larvae exposed to 4.3 µg/L as dissolved selenate for 10 d of had negligible accumulation of Se (indistinguishable from control organisms). However, larvae rapidly accumulated Se over 10 d of exposure to 3.8 and 1.8 µg/L selenite and seleno-DL-methionine (Se-met), respectively. Most Se accumulated by larvae exposed to selenite or Se-met was retained after 10 d of elimination in clean water. When additional midge larvae were exposed to Se until emergence, Se accumulated during the larval stage was largely retained in the adults. Although a strong correlation was found between the adult whole-body Se concentration and the Se concentration in the exuvia after emergence, only a minor loss of Se occurred in the shed exuvia compared with larvae and adult whole-body concentrations. X-ray absorption spectroscopy analysis showed that organic selenides and diselenides, modeled as Se-met and selenocystine, respectively, were the dominant forms of Se in both the larval and adult insect stages. The proportion and concentration of organic selenides (selenomethionine) increased in larvae and adults exposed to Se-met and selenite compared with larvae exposed to selenate, whereas the concentration of diselenides (selenocystine) remained relatively constant for all treatments.


Subject(s)
Chironomidae/metabolism , Selenium/pharmacokinetics , Selenomethionine/pharmacokinetics , Sodium Selenite/pharmacokinetics , Animals , Biological Availability , Chironomidae/drug effects , Cystine/analogs & derivatives , Cystine/pharmacokinetics , Larva/drug effects , Larva/metabolism , Organoselenium Compounds/pharmacokinetics , Selenic Acid , Selenium Compounds/pharmacokinetics , Water Pollutants/pharmacokinetics , X-Ray Absorption Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...