Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1901): 20230067, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38497269

ABSTRACT

Host-pathogen interactions can be influenced by the host microbiota, as the microbiota can facilitate or prevent pathogen infections. In addition, members of the microbiota can become virulent. Such pathobionts can cause co-infections when a pathogen infection alters the host immune system and triggers dysbiosis. Here we performed a theoretical investigation of how pathobiont co-infections affect the evolution of pathogen virulence. We explored the possibility that the likelihood of pathobiont co-infection depends on the evolving virulence of the pathogen. We found that, in contrast to the expectation from classical theory, increased virulence is not always selected for. For an increasing likelihood of co-infection with increasing pathogen virulence, we found scenario-specific selection for either increased or decreased virulence. Evolutionary changes, however, in pathogen virulence do not always translate into similar changes in combined virulence of the pathogen and the pathobiont. Only in one of the scenarios where pathobiont co-infection is triggered above a specific virulence level we found a reduction in combined virulence. This was not the case when the probability of pathobiont co-infection linearly increased with pathogen virulence. Taken together, our study draws attention to the possibility that host-microbiota interactions can be both the driver and the target of pathogen evolution. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.


Subject(s)
Coinfection , Microbiota , Humans , Virulence , Host-Pathogen Interactions
2.
Beilstein J Nanotechnol ; 14: 951-963, 2023.
Article in English | MEDLINE | ID: mdl-37736660

ABSTRACT

In this work, we present the development of an atomic layer deposition (ALD) process for metallic cobalt. The process operates at low temperatures using dicobalt hexacarbonyl-1-heptyne [Co2(CO)6HC≡CC5H11] and hydrogen plasma. For this precursor an ALD window in the temperature range between 50 and 110 °C was determined with a constant deposition rate of approximately 0.1 Å/cycle. The upper limit of the ALD window is defined by the onset of the decomposition of the precursor. In our case, decomposition occurs at temperatures of 125 °C and above, resulting in a film growth in chemical vapour deposition mode. The lower limit of the ALD window is around 35 °C, where the reduction of the precursor is incomplete. The saturation behaviour of the process was investigated. X-ray photoelectron spectroscopy measurements could show that the deposited cobalt is in the metallic state. The finally established process in ALD mode shows a homogeneous coating at the wafer level.

3.
Proc Biol Sci ; 290(1998): 20230396, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37161327

ABSTRACT

A fundamental goal in infection biology is to understand the emergence of variation in pathogen virulence-here defined as the decrease in host fitness caused by a pathogen. To uncover the sources of such variation, virulence can be decomposed into both host- and pathogen-associated components. However, decomposing virulence can be challenging owing to complex within-host pathogen dynamics such as bifurcating infections, which recently received increased empirical and theoretical attention. Bifurcating infections are characterized by the emergence of two distinct infection types: (i) terminal infections with high pathogen loads resulting in rapid host death, and (ii) persistent infections with lower loads and delayed host death. Here, we propose to use discrete mixture models to perform separate virulence decompositions for each infection type. Using this approach, we reanalysed a recently published experimental dataset on bacterial load and survival in Drosophila melanogaster. This analysis revealed several advantages of the new approach, most importantly the generation of a more comprehensive picture of the varying sources of virulence in different bacterial species. Beyond this application, our approach could provide valuable information for ground-truthing and improving theoretical models of within-host infection dynamics, which are developed to predict variation in infection outcome and pathogen virulence.


Subject(s)
Drosophila melanogaster , Animals , Virulence , Bacterial Load
4.
Nat Commun ; 13(1): 5023, 2022 08 26.
Article in English | MEDLINE | ID: mdl-36028497

ABSTRACT

Following an infection, hosts cannot always clear the pathogen, instead either dying or surviving with a persistent infection. Such variation is ecologically and evolutionarily important because it can affect infection prevalence and transmission, and virulence evolution. However, the factors causing variation in infection outcomes, and the relationship between clearance and virulence are not well understood. Here we show that sustained persistent infection and clearance are both possible outcomes across bacterial species showing a range of virulence in Drosophila melanogaster. Variation in virulence arises because of differences in the two components of virulence: bacterial infection intensity inside the host (exploitation), and the amount of damage caused per bacterium (per parasite pathogenicity). As early-phase exploitation increased, clearance rates later in the infection decreased, whereas there was no apparent effect of per parasite pathogenicity on clearance rates. Variation in infection outcomes is thereby determined by how virulence - and its components - relate to the rate of pathogen clearance. Taken together we demonstrate that the virulence decomposition framework is broadly applicable and can provide valuable insights into host-pathogen interactions.


Subject(s)
Biological Evolution , Parasites , Animals , Bacteria , Drosophila melanogaster , Persistent Infection , Virulence
5.
J Anim Ecol ; 90(11): 2523-2535, 2021 11.
Article in English | MEDLINE | ID: mdl-34118063

ABSTRACT

Social networks are considered to be 'highly modular' when individuals within one module are more connected to each other than they are to individuals in other modules. It is currently unclear how highly modular social networks influence the persistence of contagious pathogens that generate lifelong immunity in their hosts when between-group interactions are age dependent. This trait occurs in social species with communal nurseries, where juveniles are reared together for a substantial period in burrows or similar forms of containment and are thus in isolation from contact with individuals in other social groups. Our main objective was to determine whether, and to what extent, such age-dependent patterns of between-group interactions consistently increased the fade-out probability of contagious pathogens that generate lifelong immunity in their hosts. We hypothesised that in populations of species where juveniles are raised in communal nurseries, a high proportion of recovered adults in a group would form a 'protective barrier' around susceptible juveniles against pathogen transmission, thereby increasing the probability of epidemic fade-out in the population. To test this idea, we implemented a spatially implicit individual-based susceptible-infected-recovered (SIR) model for a large range of generic host and pathogen traits. Our results indicated that (a) the probability of epidemic fade-out was consistently higher in populations with communal nurseries, especially for highly contagious pathogens (high basic reproduction number, R0 ) and (b) communal nurseries can counteract the cost of group living in terms of infection risk to a greater extent than variation in other traits. We discuss our findings in relation to herd immunity and outline the importance of considering the network structure of a given host population before implementing management measures such as vaccinations, since interventions focused on individuals with high between-group contact should be particularly effective for controlling pathogen spread in hosts with communal nurseries.


Subject(s)
Epidemics , Animals , Disease Susceptibility , Probability
6.
Sci Total Environ ; 773: 145446, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33588222

ABSTRACT

In climates with seasonally limited precipitation, terrestrial animals congregate at high densities at scarce water sources. We hypothesize that viruses can exploit the recurrence of these diverse animal congregations to spread. In this study, we test the central prediction of this hypothesis - that viruses employing this transmission strategy remain stable and infectious in water. Equid herpesviruses (EHVs) were chosen as a model as they have been shown to remain stable and infectious in water for weeks under laboratory conditions. Using fecal data from wild equids from a previous study, we establish that EHVs are shed more frequently by their hosts during the dry season, increasing the probability of water source contamination with EHV. We document the presence of several strains of EHVs present in high genome copy number from the surface water and sediments of waterholes sampled across a variety of mammalian assemblages, locations, temperatures and pH. Phylogenetic analysis reveals that the different EHV strains found exhibit little divergence despite representing ancient lineages. We employed molecular approaches to show that EHVs shed remain stable in waterholes with detection decreasing with increasing temperature in sediments. Infectivity experiments using cell culture reveals that EHVs remain infectious in water derived from waterholes. The results are supportive of water as an abiotic viral vector for EHV.


Subject(s)
Herpesviridae Infections , Herpesviridae , Animals , Phylogeny , Seasons , Water
7.
Prev Vet Med ; 188: 105260, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33465640

ABSTRACT

The social structure of animal groups is considered to have an impact on their health and welfare. This could also be true for animals under commercial conditions, but research in this area has been limited. Pigs for example are known to be very social animals, but information about their grouping behavior is mostly derived from wild boars and a limited number of studies in seminatural and commercial conditions. Specifically under commercial conditions it is still unclear to what extent pig herds organize themselves in subgroups and how such group patterns emerge. To answer these questions, we tracked the positions of about 200 sows inside a barn during ongoing production over a period of five weeks and used these data to construct and analyze the animal contact networks. Our analysis showed a very high contact density and only little variation in the number of other animals that a specific animal is in contact with. Nevertheless, in each week we consistently detected three subgroups inside the barn, which also showed a clear spatial separation. Our results show that even in the high density environment of a commercial pig farm, the behavior of pigs to form differentiated groups is consistent with their behavior under seminatural conditions. Furthermore, our findings also imply that the barn layout could play an important role in the formation of the grouping pattern. These insights could be used to monitor and understand the spread of infectious diseases inside the barn better. In addition, our insights could potentially be used to improve the welfare of pigs.


Subject(s)
Animal Husbandry , Housing, Animal , Social Behavior , Sus scrofa/psychology , Animals , Female
8.
Sci Rep ; 10(1): 21764, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33303774

ABSTRACT

Immunity and parasites have been linked to the success of invasive species. Especially lower parasite burden in invasive populations has been suggested to enable a general downregulation of immune investment (Enemy Release and Evolution of Increased Competitive Ability Hypotheses). Simultaneously, keeping high immune competence towards potentially newly acquired parasites in the invasive range is essential to allow population growth. To investigate the variation of immune effectors of invasive species, we compared the mean and variance of multiple immune effectors in the context of parasite prevalence in an invasive and a native Egyptian goose (Alopochen aegyptiacus) population. Three of ten immune effectors measured showed higher variance in the invasive population. Mean levels were higher in the invasive population for three effectors but lower for eosinophil granulocytes. Parasite prevalence depended on the parasite taxa investigated. We suggest that variation of specific immune effectors, which may be important for invasion success, may lead to higher variance and enable invasive species to reduce the overall physiological cost of immunity while maintaining the ability to efficiently defend against novel parasites encountered.


Subject(s)
Bird Diseases/epidemiology , Bird Diseases/parasitology , Geese/immunology , Geese/parasitology , Host-Parasite Interactions/immunology , Introduced Species , Parasitic Diseases, Animal/epidemiology , Parasitic Diseases, Animal/parasitology , Animals , Bird Diseases/immunology , Female , Male , Namibia/epidemiology , Parasitic Diseases, Animal/immunology , Prevalence
9.
Beilstein J Nanotechnol ; 11: 1439-1449, 2020.
Article in English | MEDLINE | ID: mdl-33029473

ABSTRACT

The wafer-level integration of high aspect ratio silicon nanostructures is an essential part of the fabrication of nanodevices. Metal-assisted chemical etching (MACE) is a promising low-cost and high-volume technique for the generation of vertically aligned silicon nanowires. Noble metal nanoparticles were used to locally etch the silicon substrate. This work demonstrates a bottom-up self-assembly approach for noble metal nanoparticle formation and the subsequent silicon wet etching. The macroscopic wafer patterning has been done by using a poly(methyl methacrylate) masking layer. Different metals (Au, Pt, Pd, Cu, and Ir) were investigated to derive a set of technologies as platform for specific applications. Especially, the shape of the 3D structures and the resulting reflectance have been investigated. The Si nanostructures fabricated using Au nanoparticles show a perfect light absorption with a reflectance below 0.3%. The demonstrated technology can be integrated into common fabrication processes for microelectromechanical systems.

10.
Proc Biol Sci ; 287(1934): 20201013, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32900310

ABSTRACT

Across group-living animals, linear dominance hierarchies lead to disparities in access to resources, health outcomes and reproductive performance. Studies of how dominance rank predicts these traits typically employ one of several dominance rank metrics without examining the assumptions each metric makes about its underlying competitive processes. Here, we compare the ability of two dominance rank metrics-simple ordinal rank and proportional or 'standardized' rank-to predict 20 traits in a wild baboon population in Amboseli, Kenya. We propose that simple ordinal rank best predicts traits when competition is density-dependent, whereas proportional rank best predicts traits when competition is density-independent. We found that for 75% of traits (15/20), one rank metric performed better than the other. Strikingly, all male traits were best predicted by simple ordinal rank, whereas female traits were evenly split between proportional and simple ordinal rank. Hence, male and female traits are shaped by different competitive processes: males are largely driven by density-dependent resource access (e.g. access to oestrous females), whereas females are shaped by both density-independent (e.g. distributed food resources) and density-dependent resource access. This method of comparing how different rank metrics predict traits can be used to distinguish between different competitive processes operating in animal societies.


Subject(s)
Papio/physiology , Social Behavior , Social Dominance , Animals , Female , Kenya , Male
11.
PLoS One ; 15(8): e0237466, 2020.
Article in English | MEDLINE | ID: mdl-32790762

ABSTRACT

In the past decade, two leptospirosis outbreaks occurred among strawberry harvesters in Germany, with 13, and 45 reported cases respectively. In both outbreaks, common voles (Microtus arvalis) infected with Leptospira kischneri serovar Grippotyphosa were identified as the most likely outbreak source. In an univariate analysis, eating unwashed strawberries was identified as one of the risk factors associated with Leptospira infection. The aim of this study was to evaluate the survival time of L. kirschneri serovar Grippotyphosa on strawberries under varying conditions. Strawberries were spiked with 5x109 of both a laboratory reference strain (strain Moskva V) and an outbreak field strain (94-6/2007) of L. kirschneri serovar Grippotyphosa sequence type 110. Survival times were investigated in a fully crossed design with three incubation times (2h, 4h, 6h and 8h) and three temperatures (15°C, 21°C and 25°C) with three replicated for each condition. A wash protocol was developed and recovered Leptospira were determined by qPCR, dark field microscopy and culturing. Viable L. kirschneri of both the reference strain and the field strain were identified in all samples at 25°C and an incubation time of 2h, but only 1/9 (11%) and 4/9 (44%) of the samples incubated at 15°C were positive, respectively. Both reference and field strain were viable only in 2/9 (22%) at 25° after 6h. After an 8h incubation, viable Leptospira could not be identified on the surface of the strawberries or within the fruit for any of the tested conditions. Based on these results, the exposure risk of consumers to viable Leptospira spp. through the consumption of strawberries bought at the retail level is most likely very low. However, there is a potential risk of Leptospira infection by consumption of strawberries on pick-your-own farms.


Subject(s)
Fragaria/microbiology , Leptospira/physiology , DNA, Bacterial/metabolism , Fruit/microbiology , Germany/epidemiology , Humans , Leptospira/genetics , Leptospirosis/epidemiology , Leptospirosis/pathology , Microscopy , Real-Time Polymerase Chain Reaction , Serogroup , Temperature , Time Factors
12.
Horm Behav ; 125: 104826, 2020 09.
Article in English | MEDLINE | ID: mdl-32758500

ABSTRACT

In vertebrates, glucocorticoid secretion occurs in response to energetic and psychosocial stressors that trigger the hypothalamic-pituitary-adrenal (HPA) axis. Measuring glucocorticoid concentrations can therefore shed light on the stressors associated with different social and environmental variables, including dominance rank. Using 14,172 fecal samples from 237 wild female baboons, we test the hypothesis that high-ranking females experience fewer psychosocial and/or energetic stressors than lower-ranking females. We predicted that high-ranking females would have lower fecal glucocorticoid (fGC) concentrations than low-ranking females. Because dominance rank can be measured in multiple ways, we employ an information theoretic approach to compare 5 different measures of rank as predictors of fGC concentrations: ordinal rank; proportional rank; Elo rating; and two approaches to categorical ranking (alpha vs non-alpha and high-middle-low). Our hypothesis was supported, but it was also too simplistic. We found that alpha females exhibited substantially lower fGCs than other females (typical reduction = 8.2%). If we used proportional rank instead of alpha versus non-alpha status in the model, we observed a weak effect of rank such that fGCs rose 4.2% from the highest- to lowest-ranking female in the hierarchy. Models using ordinal rank, Elo rating, or high-middle-low categories alone failed to explain variation in female fGCs. Our findings shed new light on the association between dominance rank and the stress response, the competitive landscape of female baboons as compared to males, and the assumptions inherent in a researcher's choice of rank metric.


Subject(s)
Glucocorticoids/metabolism , Papio/physiology , Social Dominance , Animals , Behavior, Animal/physiology , Competitive Behavior/physiology , Dominance-Subordination , Feces/chemistry , Feeding Behavior/physiology , Female , Food Deprivation/physiology , Glucocorticoids/analysis , Male , Papio/metabolism
13.
J Infect Dis ; 221(2): 175-182, 2020 01 02.
Article in English | MEDLINE | ID: mdl-30838397

ABSTRACT

BACKGROUND: Influenza A viruses (IAVs) represent repeatedly emerging pathogens with near worldwide distribution and an unclear nonavian-host spectrum. While the natural hosts for IAV are among waterfowl species, certain mammals can be productively infected. Southern Africa is home to diverse avian and mammalian fauna for which almost no information exists on IAV dynamics. METHODS: We evaluated 111 serum samples from 14 mammalian species from Namibia for the presence of IAV-specific antibodies and tested whether host phylogeny, sociality, or diet influence viral prevalence and diversity. RESULTS: Free-ranging African mammals are exposed to diverse IAV subtypes. Herbivores developed antibodies against 3 different hemagglutinin (HA) subtypes, at low prevalence, while carnivores showed a higher prevalence and diversity of HA-specific antibody responses against 11 different subtypes. Host phylogeny and sociality were not significantly associated with HA antibody prevalence or subtype diversity. Both seroprevalence and HA diversity were significantly increased in carnivores regularly feeding on birds. CONCLUSIONS: The risk of infection and transmission may be driven by diet and ecological factors that increase contact with migratory and resident waterfowl. Consequently, wild mammals, particularly those that specialize on hunting and scavenging birds, could play an important but overlooked role in influenza epizootics.


Subject(s)
Carnivory , Influenza A virus/pathogenicity , Influenza in Birds/transmission , Influenza, Human/transmission , Mammals/virology , Animals , Animals, Wild/blood , Animals, Wild/immunology , Animals, Wild/virology , Birds , Hemagglutinins, Viral/immunology , Humans , Influenza A virus/isolation & purification , Influenza in Birds/virology , Influenza, Human/virology , Mammals/blood , Mammals/immunology , Namibia , Seroepidemiologic Studies
14.
Appl Environ Microbiol ; 85(3)2019 02 01.
Article in English | MEDLINE | ID: mdl-30446563

ABSTRACT

Equid herpesviruses (EHVs) are pathogens of equid and nonequid hosts that can cause disease and fatalities in captivity and in the wild. EHVs establish latent infections but can reactivate, and most EHVs are shed via the nasal passage. Therefore, nasal swabs are generally used for EHV monitoring. However, invasive sampling of wild equids is difficult. While feces is a commonly used substrate for detecting other pathogens, to our knowledge, EHVs have never been detected in feces of naturally infected equids. We systematically tested zebra feces for EHV presence by (i) establishing nested PCR conditions for fecal DNA extracts, (ii) controlling for environmental EHV contamination, and (iii) large-scale testing on a free-ranging zebra population. A dilution minimizing inhibition while maximizing viral DNA concentrations was determined in captive Grévy's zebra (Equus grevyi) fecal samples from individuals shedding EHV nasally. Sixteen of 42 fecal samples (38%) were EHV positive. To demonstrate that the EHV positivity was not a result of environmental contamination, rectal swabs of wild zebras were screened (n = 18 [Equusquagga and E. zebra]), and 50% were EHV positive, indicating that the source of EHV in feces is likely the intestinal mucosa and not postdefecation contamination. Out of 270 fecal samples of wild zebras, 26% were EHV positive. Quantitative PCRs showed that the amount of virus DNA in feces was not significantly smaller than that in other samples. In summary, fecal sampling facilitates large-scale screening and may be useful to noninvasively investigate phylogenetic EHV diversity in wild and domestic equids.IMPORTANCE Equid herpesviruses (EHVs) establish latent infections, and many EHVs are shed and transmitted via nasal discharge primarily through droplet and aerosol infection. Obtaining nasal swabs and other invasive samples from wildlife is often not possible without capture and physical restraint of individuals, which are resource intensive and a health risk for the captured animals. Fecal EHV shedding has never been demonstrated for naturally infected equids. We established the conditions for fecal EHV screening, and our results suggest that testing fecal samples is an effective noninvasive approach for monitoring acute EHV shedding in equids.


Subject(s)
Equidae/virology , Feces/virology , Herpesviridae Infections/veterinary , Herpesviridae/isolation & purification , Animals , Animals, Wild/virology , Genome, Viral , Herpesviridae/classification , Herpesviridae/genetics , Herpesviridae Infections/virology , Real-Time Polymerase Chain Reaction
15.
PeerJ ; 6: e5422, 2018.
Article in English | MEDLINE | ID: mdl-30155350

ABSTRACT

Equine Herpesviruses (EHV) are common and often latent pathogens of equids which can cause fatalities when transmitted to non-equids. Stress and elevated glucocorticoids have been associated with EHV reactivation in domestic horses, but little is known about the correlation between stress and viral reactivation in wild equids. We investigated the effect of an environmental stressor (social group restructuring following a translocation event) on EHV reactivation in captive Grévy's zebras (Equus grevyi). A mare was translocated by road transport from Zoo Mulhouse, France, to join a resident group of three mares in Tierpark Berlin, Germany. We used an indirect sampling method to assess the frequency of EHV shedding for 14 days immediately after the translocation event (termed the 'experimental period'). The results were compared with those from two control periods, one preceding and one subsequent to the experimental period. In addition, we measured fecal glucocorticoid metabolite (fGCM) concentrations daily in all individuals from 6 days before, to 14 days after translocation. We found significantly higher EHV shedding frequencies during the experimental period, compared to each of the two control periods. All animals showed significantly elevated fGCM concentrations, compared to fGCM levels before translocation. Finally, we found that an increase in fGCM concentration was significantly associated with an increased likelihood of EHV shedding. Although the small number of animals in the study limits the conclusions that can be drawn from the study, taken together, our results support the hypothesis that environmental stressors induce viral reactivation in wild equids. Our results suggest that potentials stressors such as group restructuring and translocation should be considered in the management of zoological collections to reduce the risk of fatal EHV infections in novel hosts. Moreover, environmental stressors may play an important role in EHV reactivation and spread in wild equid populations.

16.
Sci Total Environ ; 644: 151-160, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-29981515

ABSTRACT

Lead (Pb) pollution of aquatic habitats is a known threat to vertebrate health. Depending on Pb dosage, resulting symptoms can be chronic (sublethal) or acute (lethal). While acute exposure results in death of the animal, chronic sublethal exposure can also have consequences, reproduction, antioxidant defense and immunity being the most affected traits. While a great deal is known about Pb intoxication on avian health, relatively little is known about how intoxication impacts parasites dependent on their avian hosts. The effect of Pb on intestinal helminth species richness and infection intensity was investigated in mallards (Anas platyrhynchos, n = 100) from German waters. Coracoid bones were used to measure chronic Pb exposure. Intestinal helminths were characterized morphologically. Molecular approaches were also applied to identify poorly morphologically preserved parasites to obtain sequence data (cox1 gene) for species identification and future parasitological studies. Parasite species richness and infection intensity was found to be significantly lower in birds with higher chronic Pb levels suggesting both host and parasites respond to Pb exposure. Altered immune modulation in the avian host may be the underlying mechanisms of Pb triggered decrease of parasites. However, it also likely reflects differences in the susceptibility of different helminths to Pb. Cestode and acanthocephala species richness were particularly impacted by Pb exposure. We conclude that, Pb intoxication may both negatively impact avian host and parasite diversity in aquatic habitats.


Subject(s)
Ducks/parasitology , Helminths/drug effects , Lead/toxicity , Acanthocephala , Animals , Helminths/physiology , Lead Poisoning
17.
Ecol Evol ; 8(4): 2160-2170, 2018 02.
Article in English | MEDLINE | ID: mdl-29468033

ABSTRACT

The recent recolonization of Central Europe by the European gray wolf (Canis lupus) provides an opportunity to study the dynamics of parasite transmission for cases when a definitive host returns after a phase of local extinction. We investigated whether a newly established wolf population increased the prevalence of those parasites in ungulate intermediate hosts representing wolf prey, whether some parasite species are particularly well adapted to wolves, and the potential basis for such adaptations. We recorded Sarcocystis species richness in wolves and Sarcocystis prevalence in ungulates harvested in study sites with and without permanent wolf presence in Germany using microscopy and DNA metabarcoding. Sarcocystis prevalence in red deer (Cervus elaphus) was significantly higher in wolf areas (79.7%) than in control areas (26.3%) but not in roe deer (Capreolus capreolus) (97.2% vs. 90.4%) or wild boar (Sus scrofa) (82.8% vs. 64.9%). Of 11 Sarcocystis species, Sarcocystis taeniata and Sarcocystis grueneri occurred more often in wolves than expected from the Sarcocystis infection patterns of ungulate prey. Both Sarcocystis species showed a higher increase in prevalence in ungulates in wolf areas than other Sarcocystis species, suggesting that they are particularly well adapted to wolves, and are examples of "wolf specialists". Sarcocystis species richness in wolves was significantly higher in pups than in adults. "Wolf specialists" persisted during wolf maturation. The results of this study demonstrate that (1) predator-prey interactions influence parasite prevalence, if both predator and prey are part of the parasite life cycle, (2) mesopredators do not necessarily replace the apex predator in parasite transmission dynamics for particular parasites of which the apex predator is the definitive host, even if meso- and apex predators were from the same taxonomic family (here: Canidae, e.g., red foxes Vulpes vulpes), and (3) age-dependent immune maturation contributes to the control of protozoan infection in wolves.

18.
Int J Parasitol Parasites Wildl ; 6(3): 278-286, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28951833

ABSTRACT

Understanding how closely related wildlife species and their domesticated counterparts exchange or share parasites, or replace each other in parasite life cycles, is of great interest to veterinary and human public health, and wildlife ecology. Grey wolves (Canis lupus) host and spread endoparasites that can either directly infect canid conspecifics or their prey serving as intermediate hosts of indirectly transmitted species. The wolf recolonization of Central Europe represents an opportunity to study parasite transmission dynamics between wildlife and domestic species for cases when a definitive host returns after local extinction - a situation equivalent to a 'removal experiment'. Here we investigate whether the re-appearance of wolves has increased parasite pressure on hunting dogs - a group of companion animals of particular interest as they have a similar diet to wolves and flush wolf habitats when hunting. We compared prevalence (P) and species richness (SR) of helminths and the protozoan Sarcocystis to determine whether they were higher in hunting dogs from wolf areas (ndogs = 49) than a control area (ndogs = 29) without wolves. Of particular interest were S. grueneri and S. taeniata, known as 'wolf specialists'. Five helminth and 11 Sarcocystis species were identified, of which all helminths and eight Sarcocystis species were shared between dogs and wolves. Overall prevalence and species richness of helminths (P:38.5% vs. 24.1%; SRmean:0.4 vs. 0.3 species) and Sarcocystis (P:63.3% vs. 65.5%, SRmean:2.1 vs. 1.8 species) did not differ between study sites. However, hunting dogs were significantly more likely to be infected with S. grueneri in wolf areas (P:45.2% vs. 10.5%; p = 0.035). The findings suggest that wolves indirectly increase S. grueneri infection risk for hunting dogs since cervids are intermediate hosts and occasionally fed to dogs. Furthermore, a periodic anthelminthic treatment of hunting dogs may be an effective measure to control helminth infections regardless of wolf presence.

19.
Horm Behav ; 94: 153-161, 2017 08.
Article in English | MEDLINE | ID: mdl-28720488

ABSTRACT

In many mammals, maturational milestones such as dispersal and the attainment of adult dominance rank mark stages in the onset of reproductive activity and depend on a coordinated set of hormonal and socio-behavioral changes. Studies that focus on the link between hormones and maturational milestones are uncommon in wild mammals because of the challenges of obtaining adequate sample sizes of maturing animals and of tracking the movements of dispersing animals. We examined two maturational milestones in wild male baboons-adult dominance rank attainment and natal dispersal-and measured their association with variation in glucocorticoids (fGC) and fecal testosterone (fT). We found that rank attainment is associated with an increase in fGC levels but not fT levels: males that have achieved any adult rank have higher fGC than males that have not yet attained an adult rank. This indicates that once males have attained an adult rank they experience greater energetic and/or psychosocial demands than they did prior to attaining this milestone, most likely because of the resulting participation in both agonistic and sexual behaviors that accompany rank attainment. In contrast, natal dispersal does not produce sustained increases in either fGC or fT levels, suggesting that individuals are either well adapted to face the challenges associated with dispersal or that the effects of dispersal on hormone levels are ephemeral for male baboons.


Subject(s)
Animal Distribution/physiology , Glucocorticoids/analysis , Papio/physiology , Social Dominance , Testosterone/analysis , Animals , Animals, Wild , Feces/chemistry , Glucocorticoids/metabolism , Male , Papio/metabolism , Reproduction/physiology , Social Behavior , Testosterone/metabolism
20.
Sci Rep ; 7: 46559, 2017 04 21.
Article in English | MEDLINE | ID: mdl-28429732

ABSTRACT

For viruses to utilize environmental vectors (hard surfaces, soil, water) for transmission, physical and chemical stability is a prerequisite. There are many factors including pH, salinity, temperature, and turbidity that are known to contribute to the ability of viruses to persist in water. Equine herpesvirus type-1 (EHV-1) is a pathogenic alphaherpesvirus associated with domestic horses and wild equids. EHV-1 and recombinants of EHV-1 and EHV-9 are able to cause infections in non-equid animal species, particularly in captive settings. Many of the captive non-equid mammals are not naturally sympatric with equids and do not share enclosures, however, in many cases water sources may overlap. Similarly, in the wild, equids encounter many species at waterholes in times of seasonal drought. Therefore, we hypothesized that EHV-1 is stable in water and that water may act as a vector for EHV-1. In order to establish the conditions promoting or hindering EHV-1 longevity, infectivity and genomic stability in water; we exposed EHV-1 to varied water environments (pH, salinity, temperature, and turbidity) in controlled experiments over 21 days. The presence and infectivity of the virus was confirmed by both qPCR and cell culture experiments. Our results show that EHV-1 remains stable and infectious under many conditions in water for up to three weeks.


Subject(s)
Herpesviridae Infections , Herpesvirus 1, Equid/pathogenicity , Microbial Viability , Water Microbiology , Water , Animals , Cell Line , Horses , Rabbits , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...