Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogenesis ; 4: e163, 2015 Aug 17.
Article in English | MEDLINE | ID: mdl-26280654

ABSTRACT

Bladder cancer, the fourth most common noncutaneous malignancy in the United States, is characterized by high recurrence rate, with a subset of these cancers progressing to a deadly muscle invasive form of disease. Exosomes are small secreted vesicles that contain proteins, mRNA and miRNA, thus potentially modulating signaling pathways in recipient cells. Epithelial-to-mesenchymal transition (EMT) is a process by which epithelial cells lose their cell polarity and cell-cell adhesion and gain migratory and invasive properties to become mesenchymal stem cells. EMT has been implicated in the initiation of metastasis for cancer progression. We investigated the ability of bladder cancer-shed exosomes to induce EMT in urothelial cells. Exosomes were isolated by ultracentrifugation from T24 or UMUC3 invasive bladder cancer cell conditioned media or from patient urine or bladder barbotage samples. Exosomes were then added to the urothelial cells and EMT was assessed. Urothelial cells treated with bladder cancer exosomes showed an increased expression in several mesenchymal markers, including α-smooth muscle actin, S100A4 and snail, as compared with phosphate-buffered saline (PBS)-treated cells. Moreover, treatment of urothelial cells with bladder cancer exosomes resulted in decreased expression of epithelial markers E-cadherin and ß-catenin, as compared with the control, PBS-treated cells. Bladder cancer exosomes also increased the migration and invasion of urothelial cells, and this was blocked by heparin pretreatment. We further showed that exosomes isolated from patient urine and bladder barbotage samples were able to induce the expression of several mesenchymal markers in recipient urothelial cells. In conclusion, the research presented here represents both a new insight into the role of exosomes in transition of bladder cancer into invasive disease, as well as an introduction to a new platform for exosome research in urothelial cells.

2.
Oncogene ; 34(37): 4821-33, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-25531323

ABSTRACT

Interactions between tumor cells and cancer-associated fibroblasts (CAFs) in the tumor microenvironment significantly influence cancer growth and metastasis. Transforming growth factor-ß (TGF-ß) is known to be a critical mediator of the CAF phenotype, and osteopontin (OPN) expression in tumors is associated with more aggressive phenotypes and poor patient outcomes. The potential link between these two pathways has not been previously addressed. Utilizing in vitro studies using human mesenchymal stem cells (MSCs) and MDA-MB231 (OPN+) and MCF7 (OPN-) human breast cancer cell lines, we demonstrate that OPN induces integrin-dependent MSC expression of TGF-ß1 to mediate adoption of the CAF phenotype. This OPN-TGF-ß1 pathway requires the transcription factor, myeloid zinc finger 1 (MZF1). In vivo studies with xenotransplant models in NOD-scid mice showed that OPN expression increases cancer growth and metastasis by mediating MSC-to-CAF transformation in a process that is MZF1 and TGF-ß1 dependent. We conclude that tumor-derived OPN engenders MSC-to-CAF transformation in the microenvironment to promote tumor growth and metastasis via the OPN-MZF1-TGF-ß1 pathway.


Subject(s)
Breast Neoplasms/pathology , Cell Transformation, Neoplastic/metabolism , Fibroblasts/pathology , Mesenchymal Stem Cells/pathology , Neoplastic Stem Cells/pathology , Osteopontin/physiology , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Transformation, Neoplastic/genetics , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , MCF-7 Cells , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Osteopontin/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...