Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Immunol ; 200(11): 3840-3856, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29703864

ABSTRACT

Ras, a small GTPase protein, is thought to mediate Th2-dependent eosinophilic inflammation in asthma. Ras requires cell membrane association for its biological activity, and this requires the posttranslational modification of Ras with an isoprenyl group by farnesyltransferase (FTase) or geranylgeranyltransferase (GGTase). We hypothesized that inhibition of FTase using FTase inhibitor (FTI)-277 would attenuate allergic asthma by depleting membrane-associated Ras. We used the OVA mouse model of allergic inflammation and human airway epithelial (HBE1) cells to determine the role of FTase in inflammatory cell recruitment. BALB/c mice were first sensitized then exposed to 1% OVA aerosol or filtered air, and half were injected daily with FTI-277 (20 mg/kg per day). Treatment of mice with FTI-277 had no significant effect on lung membrane-anchored Ras, Ras protein levels, or Ras GTPase activity. In OVA-exposed mice, FTI-277 treatment increased eosinophilic inflammation, goblet cell hyperplasia, and airway hyperreactivity. Human bronchial epithelial (HBE1) cells were pretreated with 5, 10, or 20 µM FTI-277 prior to and during 12 h IL-13 (20 ng/ml) stimulation. In HBE1 cells, FTase inhibition with FTI-277 had no significant effect on IL-13-induced STAT6 phosphorylation, eotaxin-3 peptide secretion, or Ras translocation. However, addition of exogenous FPP unexpectedly augmented IL-13-induced STAT6 phosphorylation and eotaxin-3 secretion from HBE1 cells without affecting Ras translocation. Pharmacological inhibition of FTase exacerbates allergic asthma, suggesting a protective role for FTase or possibly Ras farnesylation. FPP synergistically augments epithelial eotaxin-3 secretion, indicating a novel Ras-independent farnesylation mechanism or direct FPP effect that promotes epithelial eotaxin-3 production in allergic asthma.


Subject(s)
Asthma/drug therapy , Bronchial Hyperreactivity/drug therapy , Eosinophils/drug effects , Farnesyltranstransferase/antagonists & inhibitors , Inflammation/drug therapy , Polyisoprenyl Phosphates/metabolism , Sesquiterpenes/metabolism , ras Proteins/metabolism , Animals , Asthma/metabolism , Bronchi/drug effects , Bronchi/metabolism , Bronchial Hyperreactivity/metabolism , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Eosinophils/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Farnesyltranstransferase/metabolism , Humans , Inflammation/metabolism , Lung/drug effects , Lung/metabolism , Male , Methionine/analogs & derivatives , Methionine/pharmacology , Mice , Mice, Inbred BALB C , Ovalbumin/pharmacology , Signal Transduction/drug effects
2.
PLoS One ; 12(11): e0187419, 2017.
Article in English | MEDLINE | ID: mdl-29112971

ABSTRACT

BACKGROUND: Positive-pressure mechanical ventilation is an essential therapeutic intervention, yet it causes the clinical syndrome known as ventilator-induced lung injury. Various lung protective mechanical ventilation strategies have attempted to reduce or prevent ventilator-induced lung injury but few modalities have proven effective. A model that isolates the contribution of mechanical ventilation on the development of acute lung injury is needed to better understand biologic mechanisms that lead to ventilator-induced lung injury. OBJECTIVES: To evaluate the effects of positive end-expiratory pressure and recruitment maneuvers in reducing lung injury in a ventilator-induced lung injury murine model in short- and longer-term ventilation. METHODS: 5-12 week-old female BALB/c mice (n = 85) were anesthetized, placed on mechanical ventilation for either 2 hrs or 4 hrs with either low tidal volume (8 ml/kg) or high tidal volume (15 ml/kg) with or without positive end-expiratory pressure and recruitment maneuvers. RESULTS: Alteration of the alveolar-capillary barrier was noted at 2 hrs of high tidal volume ventilation. Standardized histology scores, influx of bronchoalveolar lavage albumin, proinflammatory cytokines, and absolute neutrophils were significantly higher in the high-tidal volume ventilation group at 4 hours of ventilation. Application of positive end-expiratory pressure resulted in significantly decreased standardized histology scores and bronchoalveolar absolute neutrophil counts at low- and high-tidal volume ventilation, respectively. Recruitment maneuvers were essential to maintain pulmonary compliance at both 2 and 4 hrs of ventilation. CONCLUSIONS: Signs of ventilator-induced lung injury are evident soon after high tidal volume ventilation (as early as 2 hours) and lung injury worsens with longer-term ventilation (4 hrs). Application of positive end-expiratory pressure and recruitment maneuvers are protective against worsening VILI across all time points. Dynamic compliance can be used guide the frequency of recruitment maneuvers to help ameloriate ventilator-induced lung injury.


Subject(s)
Disease Models, Animal , Positive-Pressure Respiration/methods , Respiration, Artificial/adverse effects , Animals , Bronchoalveolar Lavage Fluid , Female , Mice , Mice, Inbred BALB C
3.
Anesthesiol Res Pract ; 2017: 9161040, 2017.
Article in English | MEDLINE | ID: mdl-28210272

ABSTRACT

Anesthetic protocols for murine models are varied within the literature and medetomidine has been implicated in the development of urethral plugs in male mice. Our objective was to evaluate the combination of butorphanol, dexmedetomidine, and tiletamine-zolazepam. A secondary objective was to identify which class of agent was associated with urethral obstructions in male mice. BALB/c male (n = 13) and female (n = 23) mice were assigned to dexmedetomidine and tiletamine-zolazepam with or without butorphanol or to single agent dexmedetomidine or tiletamine-zolazepam. Anesthesia was achieved in 58% (14/24) of mice without butorphanol and in 100% (24/24) of mice with butorphanol. The combination of dexmedetomidine (0.2 mg/kg), tiletamine-zolazepam (40 mg/kg), and butorphanol (3 mg/kg) resulted in an induction and anesthetic duration of 12 and 143 minutes, respectively. Urethral obstructions occurred in 66% (25/38) of trials in male mice that received dexmedetomidine with a mortality rate of 38% (5/13). Tiletamine-zolazepam, when used alone, resulted in a 0% (0/21) incidence of urethral obstructions. Combination use of dexmedetomidine, tiletamine-zolazepam, and butorphanol results in a longer and more reliable duration of anesthesia than the use of dexmedetomidine and tiletamine-zolazepam alone. Dexmedetomidine is not recommended for use in nonterminal procedures in male mice due to the high incidence of urethral obstructions and resultant high mortality rate.

4.
Toxicol Ind Health ; 33(3): 211-221, 2017 Mar.
Article in English | MEDLINE | ID: mdl-26939833

ABSTRACT

Proposition 2, which requires that egg-laying hens be confined only in ways that allow these animals to lie down, stand up, fully extend their limbs and turn around freely, was passed by the voters of California in 2008. These new housing requirements were introduced in the USA and European Union without considering the potential impact of changes in layer hen housing on the health of poultry workers in the new facilities. Particles were collected from ambient air inside a large layer hen complex featuring separate barns with conventional battery caging, enriched caging, or 'free range' (aviary) housing during winter, spring, and summer seasons over one year. Toxicity of the particles was evaluated by analysis of inflammatory cell influx into lung lavage fluid after intratracheal instillation into mice. Capacity of the particles to elicit oxidative stress was evaluated using a macrophage cell line engineered with a reporter gene sensitive to nuclear factor κB activation. We observed similar pro-inflammatory and pro-oxidant effects of the particles collected from different types of barns and over different seasons, suggesting that standard industrial hygiene techniques for evaluating respirable particles in ambient air can adequately monitor worker risk. Based on particle concentrations found in ambient air in the barns, we can rank the facilities for worker exposure to particles as conventional caging (now banned) approximately equal to enriched caging (permitted under Proposition 2). Aviary housing is associated with increased exposure of workers to particulate matter and, therefore, to greater risk of allergic reactions and/or decreased respiratory function.


Subject(s)
Air Pollutants, Occupational/toxicity , Chickens , Housing, Animal , Lung/drug effects , Particulate Matter/toxicity , Respiratory Mucosa/drug effects , Animal Husbandry , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/immunology , California , Cell Line , Endotoxins/chemistry , Endotoxins/toxicity , Housing, Animal/legislation & jurisprudence , Housing, Animal/standards , Humans , Inhalation Exposure/adverse effects , Lung/immunology , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/immunology , Male , Mice, Inbred BALB C , NF-kappa B/agonists , NF-kappa B/metabolism , Occupational Exposure/adverse effects , Oxidative Stress/drug effects , Respiratory Mucosa/immunology , Seasons , Toxicity Tests, Acute , Workforce
5.
Physiol Rep ; 3(5)2015 May 11.
Article in English | MEDLINE | ID: mdl-25969462

ABSTRACT

Systemic treatment with statins mitigates allergic airway inflammation, TH2 cytokine production, epithelial mucus production, and airway hyperreactivity (AHR) in murine models of asthma. We hypothesized that pravastatin delivered intratracheally would be quantifiable in lung tissues using mass spectrometry, achieve high drug concentrations in the lung with minimal systemic absorption, and mitigate airway inflammation and structural changes induced by ovalbumin. Male BALB/c mice were sensitized to ovalbumin (OVA) over 4 weeks, then exposed to 1% OVA aerosol or filtered air (FA) over 2 weeks. Mice received intratracheal instillations of pravastatin before and after each OVA exposure (30 mg/kg). Ultra performance liquid chromatography - mass spectrometry was used to quantify plasma, lung, and bronchoalveolar lavage fluid (BALF) pravastatin concentration. Pravastatin was quantifiable in mouse plasma, lung tissue, and BALF (BALF > lung > plasma for OVA and FA groups). At these concentrations pravastatin inhibited airway goblet cell hyperplasia/metaplasia, and reduced BALF levels of cytokines TNFα and KC, but did not reduce BALF total leukocyte or eosinophil cell counts. While pravastatin did not mitigate AHR, it did inhibit airway hypersensitivity (AHS). In this proof-of-principle study, using novel mass spectrometry methods we show that pravastatin is quantifiable in tissues, achieves high levels in mouse lungs with minimal systemic absorption, and mitigates some pathological features of allergic asthma. Inhaled pravastatin may be beneficial for the treatment of asthma by having direct airway effects independent of a potent anti-inflammatory effect. Statins with greater lipophilicity may achieve better anti-inflammatory effects warranting further research.

6.
Toxicol Sci ; 144(1): 151-62, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25628415

ABSTRACT

Silver nanoparticles (Ag NPs) can be found in myriad consumer products, medical equipment/supplies, and public spaces. However, questions remain regarding the risks associated with Ag NP exposure. As part of a consortium-based effort to better understand these nanomaterials, this study examined how Ag NPs with varying sizes and coatings affect pulmonary responses at different time-points. Four types of Ag NPs were tested: 20 nm (C20) and 110 nm (C110) citrate-stabilized NPs, and 20 nm (P20) and 110 nm (P110) PVP-stabilized NPs. Male, Sprague Dawley rats were intratracheally instilled with Ag NPs (0, 0.1, 0.5, or 1.0 mg/kg bodyweight [BW]), and bronchoalveolar lavage fluid (BALF) and lung tissues were obtained at 1, 7, and 21 days post-exposure for analysis of BAL cells and histopathology. All Ag NP types produced significantly elevated polymorphonuclear cells (PMNs) in BALF on Days 1, 7, and/or 21 at the 0.5 and/or 1.0 mg/kg BW dose(s). Histology of animals exposed to 1.0 mg/kg BW Ag NPs showed patchy, focal, centriacinar inflammation for all time-points; though neutrophils, macrophages, and/or monocytes were also found in the airway submucosa and perivascular regions at Days 1 and 7. Confocal microscopy of ethidium homodimer-stained lungs at Day 1 showed dead/dying cells at branch points along the main airway. By Day 21, only animals exposed to the high dose of C110 or P110 exhibited significant BALF neutrophilia and marked cellular debris in alveolar airspaces. Findings suggest that 110 nm Ag NPs may produce lasting effects past Day 21 post instillation.


Subject(s)
Inhalation Exposure , Lung/drug effects , Metal Nanoparticles/toxicity , Pneumonia/chemically induced , Silver/toxicity , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Citric Acid/chemistry , Citric Acid/toxicity , Dose-Response Relationship, Drug , Lung/metabolism , Lung/pathology , Male , Metal Nanoparticles/chemistry , Neutrophil Infiltration/drug effects , Neutrophils/drug effects , Neutrophils/pathology , Particle Size , Pneumonia/metabolism , Pneumonia/pathology , Povidone/chemistry , Povidone/toxicity , Rats, Sprague-Dawley , Risk Assessment , Silver/chemistry , Surface Properties , Time Factors
7.
Part Fibre Toxicol ; 11: 52, 2014 Oct 08.
Article in English | MEDLINE | ID: mdl-25292367

ABSTRACT

BACKGROUND: Silver nanowires (Ag NWs) are increasingly being used to produce touchscreens for smart phones and computers. When applied in a thin film over a plastic substrate, Ag NWs create a transparent, highly-conductive network of fibers enabling the touch interface between consumers and their electronics. Large-scale application methods utilize techniques whereby Ag NW suspensions are deposited onto substrates via droplets. Aerosolized droplets increase risk of occupational Ag NW exposure. Currently, there are few published studies on Ag NW exposure-related health effects. Concerns have risen about the potential for greater toxicity from exposure to high-aspect ratio nanomaterials compared to their non-fibrous counterparts. This study examines whether Ag NWs of varying lengths affect biological responses and silver distribution within the lungs at different time-points. METHODS: Two different sizes of Ag NWs (2 µm [S-Ag NWs] and 20 µm [L-Ag NWs]) were tested. Male, Sprague-Dawley rats were intratracheally instilled with Ag NWs (0, 0.1, 0.5, or 1.0 mg/kg). Broncho-alveolar lavage fluid (BALF) and lung tissues were obtained at 1, 7, and 21 days post exposure for analysis of BAL total cells, cell differentials, and total protein as well as tissue pathology and silver distribution. RESULTS AND CONCLUSIONS: The two highest doses produced significant increases in BAL endpoints. At Day 1, Ag NWs increased total cells, inflammatory polymorphonuclear cells (PMNs), and total protein. PMNs persisted for both Ag NW types at Day 7, though not significantly so, and by Day 21, PMNs appeared in line with sham control values. Striking histopathological features associated with Ag NWs included 1) a strong influx of eosinophils at Days 1 and 7; and 2) formation of Langhans and foreign body giant cells at Days 7 and 21. Epithelial sloughing in the terminal bronchioles (TB) and cellular exudate in alveolar regions were also common. By Day 21, Ag NWs were primarily enclosed in granulomas or surrounded by numerous macrophages in the TB-alveolar duct junction. These findings suggest short and long Ag NWs produce pulmonary toxicity; thus, further research into exposure-related health effects and possible exposure scenarios are necessary to ensure human safety as Ag NW demand increases.


Subject(s)
Lung/drug effects , Nanowires/adverse effects , Pneumonia/chemically induced , Silver/toxicity , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Dose-Response Relationship, Drug , Inhalation Exposure/adverse effects , Lung/immunology , Lung/metabolism , Lung/pathology , Male , Nanowires/administration & dosage , Particle Size , Pneumonia/immunology , Pneumonia/metabolism , Pneumonia/pathology , Rats, Sprague-Dawley , Risk Assessment , Silver/administration & dosage , Time Factors
8.
ACS Nano ; 8(9): 8911-31, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25144856

ABSTRACT

Inhaled multiwalled carbon nanotubes (MWCNTs) may cause adverse pulmonary responses due to their nanoscale, fibrous morphology and/or biopersistance. This study tested multiple factors (dose, time, physicochemical characteristics, and administration method) shown to affect MWCNT toxicity with the hypothesis that these factors will influence significantly different responses upon MWCNT exposure. The study is unique in that (1) multiple administration methods were tested using particles from the same stock; (2) bulk MWCNT formulations had few differences (metal content, surface area/functionalization); and (3) MWCNT retention was quantified using a specialized approach for measuring unlabeled MWCNTs in rodent lungs. Male Sprague-Dawley rats were exposed to original (O), purified (P), and carboxylic acid functionalized (F) MWCNTs via intratracheal instillation and inhalation. Blood, bronchoalveolar lavage fluid (BALF), and lung tissues were collected at postexposure days 1 and 21 for quantifying biological responses and MWCNTs in lung tissues by programmed thermal analysis. At day 1, MWCNT instillation produced significant BALF neutrophilia and MWCNT-positive macrophages. Instilled O- and P-MWCNTs produced significant inflammation in lung tissues, which resolved by day 21 despite MWCNT retention. MWCNT inhalation produced no BALF neutrophilia and no significant histopathology past day 1. However, on days 1 and 21 postinhalation of nebulized MWCNTs, significantly increased numbers of MWCNT-positive macrophages were observed in BALF. Results suggest (1) MWCNTs produce transient inflammation if any despite persistence in the lungs; (2) instilled O-MWCNTs cause more inflammation than P- or F-MWCNTs; and (3) MWCNT suspension media produce strikingly different effects on physicochemical particle characteristics and pulmonary responses.


Subject(s)
Health , Nanotubes, Carbon/toxicity , Toxicity Tests , Administration, Inhalation , Animals , Bronchoalveolar Lavage Fluid , Carboxylic Acids/chemistry , Cell Differentiation/drug effects , Chemical Phenomena , Dose-Response Relationship, Drug , Instillation, Drug , Macrophages/cytology , Macrophages/drug effects , Male , Nanotubes, Carbon/chemistry , Neutrophils/cytology , Neutrophils/drug effects , Rats , Rats, Sprague-Dawley , Water/chemistry
9.
PLoS One ; 8(10): e77730, 2013.
Article in English | MEDLINE | ID: mdl-24204939

ABSTRACT

Nanocarriers can deliver a wide variety of drugs, target them to sites of interest, and protect them from degradation and inactivation by the body. They have the capacity to improve drug action and decrease undesirable systemic effects. We have previously developed a well-defined non-toxic PEG-dendritic block telodendrimer for successful delivery of chemotherapeutics agents and, in these studies, we apply this technology for therapeutic development in asthma. In these proof-of-concept experiments, we hypothesized that dexamethasone contained in self-assembling nanoparticles (Dex-NP) and delivered systemically would target the lung and decrease allergic lung inflammation and airways hyper-responsiveness to a greater degree than equivalent doses of dexamethasone (Dex) alone. We found that ovalbumin (Ova)-exposed mice treated with Dex-NP had significantly fewer total cells (2.78 ± 0.44 × 10(5) (n = 18) vs. 5.98 ± 1.3 × 10(5) (n = 13), P<0.05) and eosinophils (1.09 ± 0.28 × 10(5) (n = 18) vs. 2.94 ± 0.6 × 10(5) (n = 12), p<0.05) in the lung lavage than Ova-exposed mice alone. Also, lower levels of the inflammatory cytokines IL-4 (3.43 ± 1.2 (n = 11) vs. 8.56 ± 2.1 (n = 8) pg/ml, p<0.05) and MCP-1 (13.1 ± 3.6 (n = 8) vs. 28.8 ± 8.7 (n = 10) pg/ml, p<0.05) were found in lungs of the Dex-NP compared to control, and they were not lower in the Dex alone group. In addition, respiratory system resistance was lower in the Dex-NP compared to the other Ova-exposed groups suggesting a better therapeutic effect on airways hyperresponsiveness. Taken together, these findings from early-stage drug development studies suggest that the encapsulation and protection of anti-inflammatory agents such as corticosteroids in nanoparticle formulations can improve efficacy. Further development of novel drugs in nanoparticles is warranted to explore potential treatments for chronic inflammatory diseases such as asthma.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Dexamethasone/pharmacology , Nanoparticles/administration & dosage , Pneumonia/drug therapy , Adrenal Cortex Hormones/pharmacology , Animals , Asthma/drug therapy , Asthma/metabolism , Bronchoalveolar Lavage Fluid , Chemokine CCL2/metabolism , Disease Models, Animal , Interleukin-4/metabolism , Lung/drug effects , Lung/metabolism , Male , Mice , Mice, Inbred BALB C , Nitric Oxide/metabolism , Ovalbumin/pharmacology , Pneumonia/metabolism
10.
Toxicol Appl Pharmacol ; 266(1): 48-55, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23142465

ABSTRACT

Our previous work has shown that coarse particulate matter (PM(10-2.5)) from wildfire smoke is more toxic to lung macrophages on an equal dose (by mass) basis than coarse PM isolated from normal ambient air, as evidenced by decreased numbers of macrophages in lung lavage fluid 6 and 24hours after PM instillation into mouse lungs in vivo and by cytotoxicity to a macrophage cell line observed directly in vitro. We hypothesized that pulmonary macrophages from mice instilled with wildfire coarse PM would undergo more cytotoxicity than macrophages from controls, and that there would be an increase in oxidative stress in their lungs. Cytotoxicity was quantified as decreased viable macrophages and increased percentages of dead macrophages in the bronchoalveolar lavage fluid (BALF) of mice instilled with wildfire coarse PM. At 1hour after PM instillation, we observed both decreased numbers of viable macrophages and increased dead macrophage percentages as compared to controls. An increase in free isoprostanes, an indicator of oxidative stress, from control values of 28.1±3.2pg/mL to 83.9±12.2pg/mL was observed a half-hour after PM instillation. By 1hour after PM instillation, isoprostane values had returned to 30.4±7.6pg/mL, not significantly different from control concentrations. Lung sections from mice instilled with wildfire coarse PM showed rapid Clara cell responses, with decreased intracellular staining for the Clara cell secretory protein CCSP 1hour after wildfire PM instillation. In conclusion, very rapid cytotoxicity occurs in pulmonary macrophages and oxidative stress responses are seen 0.5-1hour after wildfire coarse PM instillation. These results define early cellular and biochemical events occurring in vivo and support the hypothesis that oxidative stress-mediated macrophage toxicity plays a key role in the initial response of the mouse lung to wildfire PM exposure.


Subject(s)
Air Pollutants/toxicity , Lung/metabolism , Macrophages, Alveolar/metabolism , Oxidative Stress/physiology , Particulate Matter/toxicity , Animals , Bronchoalveolar Lavage Fluid/cytology , Cell Survival/drug effects , Cell Survival/physiology , Lung/cytology , Lung/drug effects , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/pathology , Male , Mice , Mice, Inbred BALB C , Oxidative Stress/drug effects , Particle Size , Particulate Matter/administration & dosage
11.
Toxicol Appl Pharmacol ; 257(2): 182-8, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-21945489

ABSTRACT

The mechanistic basis of the high toxicity to lung macrophages of coarse PM from the California wildfires of 2008 was examined in cell culture experiments with mouse macrophages. Wildfire PM directly killed macrophages very rapidly in cell culture at relatively low doses. The wildfire coarse PM is about four times more toxic to macrophages on an equal weight basis than the same sized PM collected from normal ambient air (no wildfires) from the same region and season. There was a good correlation between the extent of cytotoxicity and the amount of oxidative stress observed at a given dose of wildfire PM in vitro. Our data implicate NF-κB signaling in the response of macrophages to wildfire PM, and suggest that most, if not all, of the cytotoxicity of wildfire PM to lung macrophages is the result of oxidative stress. The relative ratio of toxicity and of expression of biomarkers of oxidant stress between wildfire PM and "normal" PM collected from ambient air is consistent with our previous results in mice in vivo, also suggesting that most, if not all, of the cytotoxicity of wildfire PM to lung macrophages is the result of oxidative stress. Our findings from this and earlier studies suggest that the active components of coarse PM from the wildfire are heat-labile organic compounds. While we cannot rule out a minor role for endotoxin in coarse PM preparations from the collected wildfire PM in our observed results both in vitro and in vivo, based on experiments using the inhibitor Polymyxin B most of the oxidant stress and pro-inflammatory activity observed was not due to endotoxin.


Subject(s)
Air Pollutants/toxicity , Fires , Macrophage Activation/drug effects , Macrophages, Alveolar/drug effects , Particulate Matter/toxicity , Animals , Cell Death/drug effects , Cell Death/physiology , Cell Line , Dose-Response Relationship, Drug , Macrophage Activation/physiology , Macrophages, Alveolar/metabolism , Mice , Particle Size
12.
Article in English | MEDLINE | ID: mdl-20953358

ABSTRACT

OBJECTIVES AND DESIGN: The function of the airway nitric oxide synthase (NOS) isoforms and the lung cell types responsible for its production are not fully understood. We hypothesized that NO homeostasis in the airway is important to control inflammation, which requires upregulation, of NOS2 protein expression by an NOS3-dependent mechanism. MATERIALS OR SUBJECTS: Mice from a C57BL/6 wild-type, NOS1(-/-), NOS2(-/-), and NOS3(-/-) genotypes were used. All mice strains were systemically sensitized and exposed to filtered air or ovalbumin (OVA) aerosol for two weeks to create a subchronic model of allergen-induced airway inflammation. METHODS: We measured lung function, lung lavage inflammatory and airway epithelial goblet cell count, exhaled NO, nitrate and nitrite concentration, and airway NOS1, NOS2, and NOS3 protein content. RESULTS: Deletion of NOS1 or NOS3 increases NOS2 protein present in the airway epithelium and smooth muscle of air-exposed animals. Exposure to allergen significantly reduced the expression of NOS2 protein in the airway epithelium and smooth muscle of the NOS3(-/-) strain only. This reduction in NOS2 expression was not due to the replacement of epithelial cells with goblet cells as remaining epithelial cells did not express NOS2. NOS1(-/-) animals had significantly reduced goblet cell metaplasia compared to C57Bl/6 wt, NOS2(-/-), and NOS3(-/-) allergen-exposed mice. CONCLUSION: The airway epithelial and smooth muscle cells maintain a stable airway NO concentration under noninflammatory conditions. This "homeostatic" mechanism is unable to distinguish between NOS derived from the different constitutive NOS isoforms. NOS3 is essential for the expression of NOS2 under inflammatory conditions, while NOS1 expression contributes to allergen-induced goblet cell metaplasia.


Subject(s)
Gene Expression Regulation, Enzymologic , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type I/genetics , Ovalbumin/chemistry , Animals , Gene Deletion , Goblet Cells/cytology , Inflammation , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Protein Isoforms
13.
Inhal Toxicol ; 22(7): 561-70, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20388000

ABSTRACT

The authors have previously demonstrated that wildfire-derived coarse or fine particulate matter (PM) intratracheally instilled into lungs of mice induce a strong inflammatory response. In the current study, the authors demonstrate that wildfire PM simultaneously cause major increases in oxidative stress in the mouse lungs as measured by decreased antioxidant content of the lung lavage supernatant fluid 6 and 24 h after PM administration. Concentrations of neutrophil chemokines/cytokines and of tumor necrosis factor (TNF)-alpha were elevated in the lung lavage fluid obtained 6 and 24 h after PM instillation, consistent with the strong neutrophilic inflammatory response observed in the lungs 24 h after PM administration, suggesting a relationship between the proinflammatory activity of the PM and the measured level of antioxidant capacity in the lung lavage fluid. Chemical analysis shows relatively low levels of polycyclic aromatic hydrocarbons compared to published results from typical urban PM. Coarse PM fraction is more active (proinflammatory activity and oxidative stress) on an equal-dose basis than the fine PM despite its lower content of polycyclic aromatic hydrocarbons. There does not seem to be any correlation between the content of any specific polycyclic aromatic hydrocarbon (or of total polycyclic aromatic hydrocarbon content) in the PM fraction and its toxicity. However, the concentrations of the oxidation products of phenanthrene and anthracene, phenanthraquinone and anthraquinone, were several-fold higher in the coarse PM than the fine fraction, suggesting a significant role for atmospheric photochemistry in the formation of secondary pollutants in the wildfire PM and the possibility that such secondary pollutants could be significant sources of toxicity in the wildfire PM.


Subject(s)
Antioxidants/metabolism , Cytokines/metabolism , Fires , Lung/metabolism , Particle Size , Particulate Matter/adverse effects , Air Pollutants/adverse effects , Animals , Antioxidants/analysis , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/immunology , California , Cytokines/biosynthesis , Lung/chemistry , Lung/drug effects , Male , Mice , Mice, Inbred BALB C , Particulate Matter/administration & dosage , Polycyclic Aromatic Hydrocarbons/administration & dosage , Polycyclic Aromatic Hydrocarbons/adverse effects , Wilderness
14.
Toxicol Appl Pharmacol ; 242(1): 1-8, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19800904

ABSTRACT

Arginase1 and nitric oxide synthase2 (NOS2) utilize l-arginine as a substrate, with both enzymes expressed at high levels in the asthmatic lung. Inhibition of arginase in ovalbumin-exposed C57BL/6 mice with the transition state inhibitor N(omega)-hydroxy-nor-l-arginine (nor-NOHA) significantly increased total l-arginine content in the airway compartment. We hypothesized that such an increase in l-arginine content would increase the amount of nitric oxide (NO) being produced in the airways and thereby decrease airway hyperreactivity and eosinophilic influx. We further hypothesized that despite arginase inhibition, NOS2 knockout (NOS2-/-) mice would be unable to up-regulate NO production in response to allergen exposure and would demonstrate higher amounts of airway hyperreactivity and eosinophilia under conditions of arginase inhibition than C57BL/6 animals. We found that administration of nor-NOHA significantly decreased airway hyperreactivity and eosinophilic airway inflammation in ovalbumin-exposed C57BL/6 mice, but these parameters were unchanged in ovalbumin-exposed NOS2-/- mice. Arginase1 protein content was increased in mice exposed to ovalbumin, an effect that was reversed upon nor-NOHA treatment in C57BL/6 mice. Arginase1 protein content in the airway compartment directly correlated with the degree of airway hyperreactivity in all treatment groups. NOS2-/- mice had significantly greater arginase1 and arginase2 concentrations compared to their respective C57BL/6 groups, indicating that inhibition of arginase may be dependent upon NOS2 expression. Arginase1 and 2 content were not affected by nor-NOHA administration in the NOS2-/- mice. We conclude that l-arginine metabolism plays an important role in the development of airway hyperreactivity and eosinophilic airway inflammation. Inhibition of arginase early in the allergic inflammatory response decreases the severity of the chronic inflammatory phenotype. These effects appear to be attributable to NOS2, which is a major source of NO production in the inflamed airway, although arginase inhibition may also be affecting the turnover of arginine by the other NOS isoforms, NOS1 and NOS3. The increased l-arginine content in the airway compartment of mice treated with nor-NOHA may directly or indirectly, through NOS2, control arginase expression both in response to OVA exposure and at a basal level.


Subject(s)
Arginase/antagonists & inhibitors , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/physiology , Ovalbumin/immunology , Respiratory Hypersensitivity/enzymology , Respiratory Hypersensitivity/genetics , Aerosols , Airway Resistance/drug effects , Animals , Arginase/biosynthesis , Arginine/analogs & derivatives , Arginine/metabolism , Arginine/pharmacology , Blotting, Western , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Enzymologic/genetics , Lung/pathology , Lung Compliance/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/biosynthesis , Ovalbumin/administration & dosage , Pneumonia/pathology
15.
Toxicol Appl Pharmacol ; 234(3): 273-80, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19027033

ABSTRACT

Arginase has been suggested to compete with nitric oxide synthase (NOS) for their common substrate, l-arginine. To study the mechanisms underlying this interaction, we compared arginase expression in isolated airways and the consequences of inhibiting arginase activity in vivo with NO production, lung inflammation, and lung function in both C57BL/6 and NOS2 knockout mice undergoing ovalbumin-induced airway inflammation, a mouse model of asthma. Arginases I and II were measured by western blot in isolated airways from sensitized C57BL/6 mice exposed to ovalbumin aerosol. Physiological and biochemical responses - inflammation, lung compliance, airway hyperreactivity, exhaled NO concentration, arginine concentration - were compared with the responses of NOS2 knockout mice. NOS2 knockout mice had increased total cells in lung lavage, decreased lung compliance, and increased airway hyperreactivity. Both arginase I and arginase II were constitutively expressed in the airways of normal C57BL/6 mice. Arginase I was up-regulated approximately 8-fold in the airways of C57BL/6 mice exposed to ovalbumin. Expression of both arginase isoforms were significantly upregulated in NOS2 knockout mice exposed to ovalbumin, with about 40- and 4-fold increases in arginases I and II, respectively. Arginine concentration in isolated airways was not significantly different in any of the groups studied. Inhibition of arginase by systemic treatment of C57BL/6 mice with a competitive inhibitor, Nomega-hydroxy-nor-l-arginine (nor-NOHA), significantly decreased the lung inflammatory response to ovalbumin in these animals. We conclude that NOS2 knockout mice are more sensitive to ovalbumin-induced airway inflammation and its sequelae than are C57BL/6 mice, as determined by increased total cells in lung lavage, decreased lung compliance, and increased airway hyperreactivity, and that these findings are strongly correlated with increased expression of both arginase isoforms in the airways of the NOS2 knockout mice exposed to ovalbumin.


Subject(s)
Arginase/metabolism , Asthma/enzymology , Lung/enzymology , Nitric Oxide Synthase Type II/deficiency , Pneumonia/enzymology , Animals , Arginase/antagonists & inhibitors , Arginine/analogs & derivatives , Arginine/metabolism , Arginine/pharmacology , Asthma/chemically induced , Asthma/physiopathology , Breath Tests , Bronchial Hyperreactivity/enzymology , Bronchial Provocation Tests , Bronchoalveolar Lavage Fluid/cytology , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Lung/drug effects , Lung/physiopathology , Lung Compliance , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Ovalbumin , Pneumonia/chemically induced , Pneumonia/physiopathology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...