Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(18)2024 May 14.
Article in English | MEDLINE | ID: mdl-38716841

ABSTRACT

Spin-orbit coupling induces a current density in the ground state, which consequently requires a generalization for meta-generalized gradient approximations. That is, the exchange-correlation energy has to be constructed as an explicit functional of the current density, and a generalized kinetic energy density has to be formed to satisfy theoretical constraints. Herein, we generalize our previously presented formalism of spin-orbit current density functional theory [Holzer et al., J. Chem. Phys. 157, 204102 (2022)] to non-magnetic and magnetic periodic systems of arbitrary dimension. In addition to the ground-state exchange-correlation potential, analytical derivatives such as geometry gradients and stress tensors are implemented. The importance of the current density is assessed for band gaps, lattice constants, magnetic transitions, and Rashba splittings. In the latter, the impact of the current density may be larger than the deviation between different density functional approximations.

2.
Chemphyschem ; 25(13): e202400120, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38456204

ABSTRACT

Post-Kohn-Sham methods are used to evaluate the ground-state correlation energy and the orbital self-energy of systems consisting of multiple flavors of different fermions. Starting from multicomponent density functional theory, suitable ways to arrive at the corresponding multicomponent random-phase approximation and the multicomponent Green's function G W ${GW}$ approximation, including relativistic effects, are outlined. Given the importance of both of this methods in the development of modern Kohn-Sham density functional approximations, this work will provide a foundation to design advanced multicomponent density functional approximations. Additionally, the G W ${GW}$ quasiparticle energies are needed to study light-matter interactions with the Bethe-Salpeter equation.

3.
J Phys Chem A ; 128(3): 670-686, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38195394

ABSTRACT

An efficient framework for the calculation of paramagnetic NMR (pNMR) shifts within exact two-component (X2C) theory and (current-dependent) density functional theory (DFT) up to the class of local hybrid functionals (LHFs) is presented. Generally, pNMR shifts for systems with more than one unpaired electron depend on the orbital shielding contribution and a temperature-dependent term. The latter includes zero-field splitting (ZFS), hyperfine coupling (HFC), and the g-tensor. For consistency, we calculate these three tensors at the same level of theory, i.e., using scalar-relativistic X2C augmented with spin-orbit perturbation theory. Results for pNMR chemical shifts of transition-metal complexes reveal that this X2C-DFT framework can yield good results for both the shifts and the individual tensor contributions of metallocenes and related systems, especially if the HFC constant is large. For small HFC constants, the relative error is often large, and sometimes the sign may be off. 4d and 5d complexes with more complicated structures demonstrate the limitations of a fully DFT-based approach. Additionally, a Co-based complex with a very large ZFS and pronounced multireference character is not well described. Here, a hybrid DFT-multireference framework is necessary for accurate results. Our results show that X2C is sufficient to describe relativistic effects and computationally cheaper than a fully relativistic approach. Thus, it allows use of large basis sets for converged HFCs. Overall, current-dependent meta-generalized gradient approximations and LHFs show some potential; however, the currently available functionals leave a lot to be desired, and the predictive power is limited.

4.
J Chem Phys ; 159(18)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37937936

ABSTRACT

We present a gauge-origin invariant exact two-component (X2C) approach within a modern density functional framework, supporting meta-generalized gradient approximations such as TPSS and range-separated hybrid functionals such as CAM-B3LYP. The complete exchange-correlation kernel is applied, including the direct contribution of the field-dependent basis functions and the reorthonormalization contribution from the perturbed overlap matrix. Additionally, the finite nucleus model is available for the electron-nucleus potential and the vector potential throughout. Efficiency is ensured by the diagonal local approximation to the unitary decoupling transformation in X2C as well as the (multipole-accelerated) resolution of the identity approximation for the Coulomb term (MARI-J, RI-J) and the seminumerical exchange approximation. Errors introduced by these approximations are assessed and found to be clearly negligible. The applicability of our implementation to large-scale calculations is demonstrated for a tin pincer-type system as well as low-valent tin and lead complexes. Here, the calculation of the Sn nuclear magnetic resonance shifts for the pincer-type ligand with about 2400 basis functions requires less than 1 h for hybrid density functionals. Further, the impact of spin-orbit coupling on the nucleus-independent chemical shifts and the corresponding ring currents of all-metal aromatic systems is studied.

5.
J Chem Phys ; 159(19)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37987521

ABSTRACT

An efficient implementation of zero-field splitting parameters based on the work of Schmitt et al. [J. Chem. Phys. 134, 194113 (2011)] is presented. Seminumerical integration techniques are used for the two-electron spin-dipole contribution and the response equations of the spin-orbit perturbation. The original formulation is further generalized. First, it is extended to meta-generalized gradient approximations and local hybrid functionals. For these functional classes, the response of the paramagnetic current density is considered in the coupled-perturbed Kohn-Sham equations for the spin-orbit perturbation term. Second, the spin-orbit perturbation is formulated within relativistic exact two-component theory and the screened nuclear spin-orbit (SNSO) approximation. The accuracy of the implementation is demonstrated for transition-metal and diatomic main-group compounds. The efficiency is assessed for Mn and Mo complexes. Here, it is found that coarse integration grids for the seminumerical schemes lead to drastic speedups while introducing clearly negligible errors. In addition, the SNSO approximation substantially reduces the computational demands and leads to very similar results as the spin-orbit mean field Ansatz.

6.
J Chem Theory Comput ; 19(20): 6859-6890, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37382508

ABSTRACT

TURBOMOLE is a highly optimized software suite for large-scale quantum-chemical and materials science simulations of molecules, clusters, extended systems, and periodic solids. TURBOMOLE uses Gaussian basis sets and has been designed with robust and fast quantum-chemical applications in mind, ranging from homogeneous and heterogeneous catalysis to inorganic and organic chemistry and various types of spectroscopy, light-matter interactions, and biochemistry. This Perspective briefly surveys TURBOMOLE's functionality and highlights recent developments that have taken place between 2020 and 2023, comprising new electronic structure methods for molecules and solids, previously unavailable molecular properties, embedding, and molecular dynamics approaches. Select features under development are reviewed to illustrate the continuous growth of the program suite, including nuclear electronic orbital methods, Hartree-Fock-based adiabatic connection models, simplified time-dependent density functional theory, relativistic effects and magnetic properties, and multiscale modeling of optical properties.

7.
Chemistry ; 29(27): e202300734, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37039272

ABSTRACT

Invited for the cover of this issue are the groups of P. W. Roesky (Karlsruhe) and F. Weigend (Marburg). The image depicts coinage metal cores with tetrahedrally coordinating tin atoms. Read the full text of the article at 10.1002/chem.202203583.

8.
J Chem Theory Comput ; 19(7): 2010-2028, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36939092

ABSTRACT

The self-consistent and complex spin-orbit exact two-component (X2C) formalism for NMR spin-spin coupling constants [ J. Chem. Theory Comput. 17, 2021, 3874-3994] is reduced to a scalar one-component ansatz. This way, the first-order response term can be partitioned into the Fermi-contact (FC) and spin-dipole (SD) interactions as well as the paramagnetic spin-orbit (PSO) contribution. The FC+SD terms are real and symmetric, while the PSO term is purely imaginary and antisymmetric. The relativistic one-component approach is combined with a modern density functional treatment up to local hybrid functionals including the response of the current density. Computational demands are reduced by factors of 8-24 as shown for a large tin compound consisting of 137 atoms. Limitations of the current ansatz are critically assessed for Sn, Pb, Pd, and Pt compounds, i.e. the one-component treatment is not sufficient for tin compounds featuring a few heavy halogen atoms.

9.
Chemistry ; 29(27): e202203583, 2023 May 11.
Article in English | MEDLINE | ID: mdl-36533713

ABSTRACT

The synthesis of a novel bis-stannylene pincer ligand and its complexation with coinage metals (CuI , AgI and AuI ) are described. All coinage metal centres are in tetrahedral coordination environments in the solid state and are exclusively coordinated by four neutral SnII donors. 119 Sn NMR provided information about the behaviour in solution. All of the isolated compounds have photoluminescent properties, and these were investigated at low and elevated temperatures. Compared to the free bis-stannylene ligand, coordination to coinage metals led to an increase in the luminescence intensity. The new compounds were investigated in detail through all-electron relativistic density functional theory (DFT) calculations.

10.
Nat Chem ; 15(3): 347-356, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36550232

ABSTRACT

The occurrence of aromaticity in organic molecules is widely accepted, but its occurrence in purely metallic systems is less widespread. Molecules comprising only metal atoms (M) are known to be able to exhibit aromatic behaviour, sustaining ring currents inside an external magnetic field along M-M connection axes (σ-aromaticity) or above and below the plane (π-aromaticity) for cyclic or cage-type compounds. However, all-metal compounds provide an extension of the electrons' mobility also in other directions. Here, we show that regular {Bi6} prisms exhibit a non-localizable molecular orbital of f-type symmetry and generate a strong ring current that leads to a behaviour referred to as φ-aromaticity. The experimentally observed heterometallic cluster [{CpRu}3Bi6]-, based on a regular prismatic {Bi6} unit, displays aromatic behaviour; according to quantum chemical calculations, the corresponding hypothetical Bi62- prism shows a similar behaviour. By contrast, [{(cod)Ir}3Bi6] features a distorted Bi6 moiety that inhibits φ-aromaticity.

11.
J Chem Phys ; 157(20): 204102, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36456217

ABSTRACT

Relativistic two-component density functional calculations are carried out in a non-collinear formalism to describe spin-orbit interactions, where the exchange-correlation functional is constructed as a generalization of the non-relativistic density functional approximation. Contrary to non-relativistic density functional theory (DFT), spin-orbit coupling, however, leads to a non-vanishing paramagnetic current density. Density functionals depending on the kinetic energy density, such as meta-generalized gradient approximations, should therefore be constructed in the framework of current DFT (CDFT). The latter has previously exclusively been used in the regime of strong magnetic fields. Herein, we present a consistent CDFT approach for relativistic DFT, including spin-orbit coupling. Furthermore, we assess the importance of the current density terms for ground-state energies, excitation energies, nuclear magnetic resonance shielding, and spin-spin coupling constants, as well as hyperfine coupling constants, Δg-shifts, and the nuclear quadrupole interaction tensor in electron paramagnetic resonance (EPR) spectroscopy. The most notable changes are found for EPR properties. The impact of the current-dependent terms rises with the number of unpaired electrons, and consequently, the EPR properties are more sensitive toward CDFT. Considerable changes are observed for the strongly constrained and appropriately normed functionals, as well as the B97M family and TASK. The current density terms are less important when exact exchange is incorporated. At the same time, the current-dependent kernel ensures the stability of response calculations in all cases. We, therefore, strongly recommend to use the framework of CDFT for self-consistent spin-orbit calculations.

12.
J Chem Phys ; 157(3): 034108, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35868924

ABSTRACT

Local hybrid functionals are a more flexible class of density functional approximations, allowing for a position-dependent admixture of exact exchange. This additional flexibility, however, comes with a more involved mathematical form and a more complicated design. A common denominator for previously constructed local hybrid functionals is the usage of thermochemical benchmark data to construct these functionals. Herein, we design a local hybrid functional without relying on benchmark data. Instead, we construct it in a more ab initio manner, following the principles of modern meta-generalized gradient approximations and considering theoretical constraints. To achieve this, we make use of the density matrix expansion and a local mixing function based on an approximate correlation length. The accuracy of the developed density functional approximation is assessed for thermochemistry, excitation energies, polarizabilities, magnetizabilities, nuclear magnetic resonance (NMR) spin-spin coupling constants, NMR shieldings, and shifts, as well as EPR g-tensors and hyperfine coupling constants. Here, the new exchange functional shows a robust performance and is especially well suited for atomization energies, barrier heights, excitation energies, NMR coupling constants, and EPR properties, whereas it loses some ground for the NMR shifts. Therefore, the designed functional is a major step forward for functionals that have been designed from first principles.

13.
J Chem Phys ; 157(3): 031102, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35868928

ABSTRACT

Meta-generalized gradient approximations (meta-GGAs) and local hybrid functionals generally depend on the kinetic energy density τ. For magnetic properties, this necessitates generalizations to ensure gauge invariance. In most implementations, τ is generalized by incorporating the external magnetic field. However, this introduces artifacts in the response of the density matrix and does not satisfy the iso-orbital constraint. Here, we extend previous approaches based on the current density to paramagnetic nuclear magnetic resonance (NMR) shieldings and electron paramagnetic resonance (EPR) g-tensors. The impact is assessed for main-group compounds and transition-metal complexes considering 25 density functional approximations. It is shown that the current density leads to substantial improvements-especially for the popular Minnesota and strongly constrained and appropriately normed (SCAN) functional families. Thus, we strongly recommend to use the current density generalized τ in paramagnetic NMR and EPR calculations with meta-GGAs.

14.
J Phys Chem A ; 126(30): 5050-5069, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35857421

ABSTRACT

The temperature-dependent Fermi-contact and pseudocontact terms are important contributions to the paramagnetic NMR shielding tensor. Herein, we augment the scalar-relativistic (local) exact two-component (X2C) framework with spin-orbit perturbation theory including the screened nuclear spin-orbit correction for the EPR hyperfine coupling and g tensor to compute these temperature-dependent terms. The accuracy of this perturbative ansatz is assessed with the self-consistent spin-orbit two-component and four-component treatments serving as reference. This shows that the Fermi-contact and pseudocontact interaction is sufficiently described for paramagnetic NMR shifts; however, larger deviations are found for the EPR spectra and the principle components of the EPR properties of heavy elements. The impact of the perturbative treatment is further compared to that of the density functional approximation and the basis set. Large-scale calculations are routinely possible with the multipole-accelerated resolution of the identity approximation and the seminumerical exchange approximation, as shown for [CeTi6O3(OiPr)9(salicylate)6].

15.
J Chem Theory Comput ; 18(4): 2246-2266, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35354319

ABSTRACT

We present an exact two-component (X2C) ansatz for the EPR g tensor using gauge-including atomic orbitals (GIAOs) and a magnetically balanced basis set expansion. In contrast to previous X2C and four-component relativistic ansätze for the g tensor, this implementation results in a gauge-origin-invariant formalism. Furthermore, the derivatives of the relativistic decoupling matrix are incorporated to form the complete analytical derivative of the X2C Hamiltonian. To reduce the associated computational costs, we apply the diagonal local approximation to the unitary decoupling transformation (DLU). The quasi-relativistic X2C and DLU-X2C Hamiltonians accurately reproduce the results of the parent four-component relativistic theory when accounting for two-electron picture-change effects with the modified screened nuclear spin-orbit approximation in the respective one-electron integrals and integral derivatives. According to our benchmark studies, the uncontracted Dyall and segmented-contracted Karlsruhe x2c-type basis sets perform well when compared to large even-tempered basis sets. Moreover, (range-separated) hybrid density functional approximations such as LC-ωPBE and ωB97X-D are needed to match the experimental findings. The impact of the GIAOs depends on the distribution of the spin density, and their use may change the Δg shifts by 10-50% as shown for [(C5Me5)2Y(µ-S)2Mo(µ-S)2Y(C5Me5)2]-. Routine calculations of large molecules are possible with widely available and comparably low-cost hardware as demonstrated for [Pt(C6Cl5)4]- with 3003 basis functions and three spin-(1/2) La(II) and Lu(II) compounds, for which we observe good agreement with the experimental findings.

16.
J Chem Theory Comput ; 18(2): 1030-1045, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-34981925

ABSTRACT

We present the first steps to extend the Green's function GW method and the Bethe-Salpeter equation (BSE) to molecular response properties such as nuclear magnetic resonance (NMR) indirect spin-spin coupling constants. We discuss both a nonrelativistic one-component and a quasi-relativistic two-component formalism. The latter describes scalar-relativistic and spin-orbit effects and allows us to study heavy-element systems with reasonable accuracy. Efficiency is maintained by the application of the resolution of the identity approximation throughout. The performance is demonstrated using conventional central processing units (CPUs) and modern graphics processing units (GPUs) for molecules involving several thousand basis functions. Our results show that a large amount of Hartree-Fock exchange is vital to provide a sufficient Kohn-Sham starting point to compute the GW quasi-particle energies. As the GW-BSE approach is generally less accurate for triplet excitations or related properties such as the Fermi-contact interaction, the admixture of the Kohn-Sham correlation kernel through the contracted BSE (cBSE) method improves the results for NMR coupling constants. This leads to remarkable results when combined with the eigenvalue-only self-consistent variant (evGW) and Becke's half and half functional (BH&HLYP) or the CAM-QTP family. The developed methodology is used to calculate the Karplus curve of tin molecules, illustrating its applicability to extended chemically relevant molecules. Here, the GW-cBSE method improves upon the chosen BH&HLYP Kohn-Sham starting points.

17.
J Chem Theory Comput ; 18(1): 323-343, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-34928142

ABSTRACT

We present a highly efficient implementation of the electron-nucleus hyperfine coupling matrix within the one-electron exact two-component (X2C) theory. The complete derivative of the X2C Hamiltonian is formed, that is, the derivatives of the unitary decoupling transformation are considered. This requires the solution of the response and Sylvester equations, consequently increasing the computational costs. Therefore, we apply the diagonal local approximation to the unitary decoupling transformation (DLU). The finite nucleus model is employed for both the scalar potential and the vector potential. Two-electron picture-change effects are modeled with the (modified) screened nuclear spin-orbit approach. Our implementation is fully integral direct and OpenMP-parallelized. An extensive benchmark study regarding the Hamiltonian, the basis set, and the density functional approximation is carried out for a set of 12-17 transition-metal compounds. The error introduced by DLU is negligible, and the DLU-X2C Hamiltonian accurately reproduces its four-component "fully" relativistic parent results. Functionals with a large amount of Hartree-Fock exchange such as CAM-QTP-02 and ωB97X-D are generally favorable. The pure density functional r2SCAN performs remarkably and even outperforms the common hybrid functionals TPSSh and CAM-B3LYP. Fully uncontracted basis sets or contracted quadruple-ζ bases are required for accurate results. The capability of our implementation is demonstrated for [Pt(C6Cl5)4]- with more than 4700 primitive basis functions and four rare-earth single-molecule magnets: [La(OAr*)3]-, [Lu(NR2)3]-, [Lu(OAr*)3]-, and [TbPc2]-. Here, the results with the spin-orbit DLU-X2C Hamiltonian are in an excellent agreement with the experimental findings of all Pt, La, Lu, and Tb molecules.

18.
J Phys Chem A ; 125(44): 9707-9723, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34723533

ABSTRACT

We present an efficient implementation of paramagnetic NMR shielding tensors and shifts in a nonrelativistic and scalar-relativistic density functional theory framework. For the latter, we make use of the scalar exact two-component Hamiltonian in its local approximation, and generally we apply the well established (multipole-accelerated) resolution of the identity approximation and the seminumerical exchange approximation. The perturbed density matrix of a paramagnetic NMR shielding calculation is further used to study the magnetically induced current density and ring currents of open-shell systems as illustrated for [U@Bi12]3-. [U@Bi12]3- features delocalized highest occupied molecular orbitals and sustains a net diatropic ring current of ca. 18 nA/T through the Bi12 torus similar to the all-metal aromatic heavy-element cluster [Th@Bi12]4-.

19.
J Chem Theory Comput ; 17(7): 3974-3994, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34151571

ABSTRACT

A quasi-relativistic implementation of NMR indirect spin-spin coupling constants is presented. The exact two-component (X2C) Hamiltonian and its diagonal local approximation to the unitary decoupling transformation (DLU) are utilized together with the (modified) screened nuclear spin-orbit approach. In a restricted kinetic balance, the finite nucleus model is available for both the scalar and vector potentials. The implementation supports density functionals up to the fourth rung of Jacob's ladder, i.e., (range-separated) hybrid and local hybrid functionals based on a seminumerical ansatz. We assess the quality of our quasi-relativistic X2C approach by comparison with "fully" relativistic four-component results for small main-group molecules and alkynyl compounds. The mean absolute error introduced by the DLU scheme is less than 0.05 × 1019 T J-2 of the reduced coupling constant for the small main-group molecules and 0.5 Hz for the alkynyl compounds. Thus, the error is significantly smaller than finite nucleus size effects for heavy elements. The basis set convergence and the impact of different density functional approximations are further studied. We propose a simple scheme to develop segmented-contracted relativistic all-electron basis sets for NMR spin-spin couplings. Our implementation allows us to perform calculations of extended molecules with reasonable computational effort, which is illustrated for the 1J(119Sn, 31P) coupling constant of a low-valent tin phosphinidenide complex. The corresponding results are in good agreement with the experimental findings.

20.
J Chem Theory Comput ; 17(5): 2928-2947, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33914504

ABSTRACT

A comprehensive overview of the performance of local hybrid functionals for molecular properties like excited states, ionization potentials within the GW framework, polarizabilities, magnetizabilities, NMR chemical shifts, and NMR spin-spin coupling constants is presented. We apply the generalization of the kinetic energy, τ, with the paramagnetic current density to all magnetic properties and the excitation energies from time-dependent density functional theory. This restores gauge invariance for these properties. Different ansätze for local mixing functions such as the iso-orbital indicator, the correlation length, the Görling-Levy second-order limit, and the spin polarization are compared. For the latter, we propose a modified version of the corresponding hyper-generalized gradient approximation functional of Perdew, Staroverov, Tao, and Scuseria (PSTS) [Phys. Rev. A 2008, 78, 052513] to allow for a numerically stable evaluation of the exchange-correlation kernel and hyperkernel. The PSTS functional leads to a very consistent improvement compared to the related TPSSh functional. It is further shown that the "best" choice of the local mixing function depends on the studied property and molecular class. While functionals based on the iso-orbital indicator lead to rather accurate excitation energies and ionization energies, the results are less impressive for NMR properties, for which a considerable dependence on the considered molecular test set and nuclei is observed. Johnson's local hybrid functional based on the correlation length yields remarkable results for NMR shifts of compounds featuring heavy elements and also for the excitation energies of organic compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...