Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 2852, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36806198

ABSTRACT

Entanglement, and quantum correlation, are precious resources for quantum technologies implementation based on quantum information science, such as quantum communication, quantum computing, and quantum interferometry. Nevertheless, to our best knowledge, a directly or numerically computable measure for the entanglement of multipartite mixed states is still lacking. In this work, (i) we derive a measure of the degree of quantum correlation for mixed multipartite states. The latter possesses a closed-form expression valid in the general case unlike, to our best knowledge, all other known measures of quantum correlation. (ii) We further propose an entanglement measure, derived from this quantum correlation measure using a novel regularization procedure for the density matrix. Therefore, a comparison of the proposed measures, of quantum correlation and entanglement, allows one to distinguish between quantum correlation detached from entanglement and the one induced by entanglement and, hence, to identify separable but non-classical states. We have tested our quantum correlation and entanglement measures, on states well-known in literature: a general Bell diagonal state and the Werner states, which are easily tractable with our regularization procedure, and we have verified the accordance between our measures and the expected results for these states. Finally, we validate the two measures in two cases of multipartite states. The first is a generalization to three qubits of the Werner state, the second is a one-parameter three qubits mixed state interpolating between a bi-separable state and a genuine multipartite state, passing through a fully separable state.

2.
Sci Rep ; 11(1): 16259, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34376732

ABSTRACT

Quantum technologies able to manipulating single quantum systems, are presently developing. Among the dowries of the quantum realm, entanglement is one of the basic resources for the novel quantum revolution. Within this context, one is faced with the problem of protecting the entanglement when a system state is manipulated. In this paper, we investigate the effect of the classical driving field on the generation entanglement between two qubits interacting with a bosonic environment. We discuss the effect of the classical field on the generation of entanglement between two (different) qubits and the conditions under which it has a constructive role in protecting the initial-state entanglement from decay induced by its environment. In particular, in the case of similar qubits, we locate a stationary sub-space of the system Hilbert space, characterized by states non depending on the environment properties as well as on the classical driving-field. Thus, we are able to determine the conditions to achieve maximally entangled stationary states after a transient interaction with the environment. We show that, overall, the classical driving field has a constructive role for the entanglement protection in the strong coupling regime. Also, we illustrate that a factorable initial-state can be driven in an entangled state and, even, in an entangled steady-state after the interaction with the environment.

3.
Int J Mol Sci ; 22(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34298980

ABSTRACT

By resorting to a model inspired to the standard Davydov and Holstein-Fröhlich models, in the present paper we study the motion of an electron along a chain of heavy particles modeling a sequence of nucleotides proper to a DNA fragment. Starting with a model Hamiltonian written in second quantization, we use the Time Dependent Variational Principle to work out the dynamical equations of the system. It can be found that, under the action of an external source of energy transferred to the electron, and according to the excitation site, the electron current can display either a broad frequency spectrum or a sharply peaked frequency spectrum. This sequence-dependent charge transfer phenomenology is suggestive of a potentially rich variety of electrodynamic interactions of DNA molecules under the action of electron excitation. This could imply the activation of interactions between DNA and transcription factors, or between DNA and external electromagnetic fields.


Subject(s)
DNA/chemistry , Electromagnetic Phenomena , Electrons , Phonons , Quantum Theory , DNA Repair , Entropy , Fourier Analysis , Mathematics , Models, Chemical
4.
Sci Rep ; 11(1): 6591, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33758269

ABSTRACT

In the present paper we address the problem of the energy downconversion of the light absorbed by a protein into its internal vibrational modes. We consider the case in which the light receptors are fluorophores either naturally co-expressed with the protein or artificially covalently bound to some of its amino acids. In a recent work [Phys. Rev. X 8, 031061 (2018)], it has been experimentally found that by shining a laser light on the fluorophores attached to a protein the energy fed to it can be channeled into the normal mode of lowest frequency of vibration thus making the subunits of the protein coherently oscillate. Even if the phonon condensation phenomenon has been theoretically explained, the first step - the energy transfer from electronic excitation into phonon excitation - has been left open. The present work is aimed at filling this gap.

5.
Entropy (Basel) ; 22(4)2020 Mar 26.
Article in English | MEDLINE | ID: mdl-33286155

ABSTRACT

In the present work, we discuss how the functional form of thermodynamic observables can be deduced from the geometric properties of subsets of phase space. The geometric quantities taken into account are mainly extrinsic curvatures of the energy level sets of the Hamiltonian of a system under investigation. In particular, it turns out that peculiar behaviours of thermodynamic observables at a phase transition point are rooted in more fundamental changes of the geometry of the energy level sets in phase space. More specifically, we discuss how microcanonical and geometrical descriptions of phase-transitions are shaped in the special case of ϕ 4 models with either nearest-neighbours and mean-field interactions.

6.
Phys Rev E ; 93(6): 062317, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27415290

ABSTRACT

A central issue in the science of complex systems is the quantitative characterization of complexity. In the present work we address this issue by resorting to information geometry. Actually we propose a constructive way to associate with a-in principle, any-network a differentiable object (a Riemannian manifold) whose volume is used to define the entropy. The effectiveness of the latter in measuring network complexity is successfully proved through its capability of detecting a classical phase transition occurring in both random graphs and scale-free networks, as well as of characterizing small exponential random graphs, configuration models, and real networks.

7.
Phys Rev E ; 93(5): 052138, 2016 May.
Article in English | MEDLINE | ID: mdl-27300860

ABSTRACT

Persistent homology analysis, a recently developed computational method in algebraic topology, is applied to the study of the phase transitions undergone by the so-called mean-field XY model and by the ϕ^{4} lattice model, respectively. For both models the relationship between phase transitions and the topological properties of certain submanifolds of configuration space are exactly known. It turns out that these a priori known facts are clearly retrieved by persistent homology analysis of dynamically sampled submanifolds of configuration space.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(5 Pt 1): 050101, 2012 May.
Article in English | MEDLINE | ID: mdl-23004688

ABSTRACT

In the general case of a many-body Hamiltonian system described by an autonomous Hamiltonian H and with K ≥ 0 independent conserved quantities, we derive the microcanonical thermodynamics. Using simple approach, based on differential geometry, we derive the microcanonical entropy and the derivatives of the entropy with respect to the conserved quantities. In such a way, we show that all the thermodynamical quantities, such as the temperature, the chemical potential, and the specific heat, are measured as a microcanonical average of the appropriate microscopic dynamical functions that we have explicitly derived. Our method applies also in the case of nonseparable Hamiltonians, where the usual definition of kinetic temperature, derived by the virial theorem, does not apply.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(4 Pt 2): 046205, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18999506

ABSTRACT

We aim at assessing the validity limits of some simplifying hypotheses that, within a Riemmannian geometric framework, have provided an explanation of the origin of Hamiltonian chaos and have made it possible to develop a method of analytically computing the largest Lyapunov exponent of Hamiltonian systems with many degrees of freedom. Therefore, a numerical hypotheses testing has been performed for the Fermi-Pasta-Ulam beta model and for a chain of coupled rotators. These models, for which analytic computations of the largest Lyapunov exponents have been carried out in the mentioned Riemannian geometric framework, appear as paradigmatic examples to unveil the reason why the main hypothesis of quasi-isotropy of the mechanical manifolds sometimes breaks down. The breakdown is expected whenever the topology of the mechanical manifolds is nontrivial. This is an important step forward in view of developing a geometric theory of Hamiltonian chaos of general validity.

10.
Phys Rev Lett ; 97(6): 060401, 2006 Aug 11.
Article in English | MEDLINE | ID: mdl-17026150

ABSTRACT

We introduce a technique to obtain localization of Bose-Einstein condensates in optical lattices via boundary dissipations. Stationary and traveling localized states are generated by removing atoms at the optical lattice ends. Clear regimes of stretched-exponential decay for the number of atoms trapped in the lattice are identified. The phenomenon is universal and can also be observed in arrays of optical waveguides with mirrors at the system boundaries.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(3 Pt 2A): 036218, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15903557

ABSTRACT

We propose a method that allows us to analytically compute the largest Lyapunov exponent of a Hamiltonian chaotic system from the knowledge of a few unstable periodic orbits (UPOs). In the framework of a recently developed theory for Hamiltonian chaos, by computing the time averages of the metric tensor curvature and of its fluctuations along analytically known UPOs, we have re-derived the analytic value of the largest Lyapunov exponent for the Fermi-Pasta-Ulam-beta (FPU-beta) model. The agreement between our results and the Lyapunov exponents obtained by means of standard numerical simulations confirms the point of view which attributes to UPOs the special role of efficient probes of general dynamical properties, among them chaotic instability.

12.
Chaos ; 15(1): 15106, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15836283

ABSTRACT

We briefly review some of the most relevant results that our group obtained in the past, while investigating the dynamics of the Fermi-Pasta-Ulam (FPU) models. The first result is the numerical evidence of the existence of two different kinds of transitions in the dynamics of the FPU models: (i) A stochasticity threshold (ST), characterized by a value of the energy per degree of freedom below which the overwhelming majority of the phase space trajectories are regular (vanishing Lyapunov exponents). It tends to vanish as the number N of degrees of freedom is increased. (ii) A strong stochasticity threshold (SST), characterized by a value of the energy per degree of freedom at which a crossover appears between two different power laws of the energy dependence of the largest Lyapunov exponent, which phenomenologically corresponds to the transition between weak and strong chaotic regimes. It is stable with N. The second result is the development of a Riemannian geometric theory to explain the origin of Hamiltonian chaos. Starting this theory has been motivated by the inadequacy of the approach based on homoclinic intersections to explain the origin of chaos in systems of arbitrarily large N, or arbitrarily far from quasi-integrability, or displaying a transition between weak and strong chaos. Finally, the third result stems from the search for the transition between weak and strong chaos in systems other than FPU. Actually, we found that a very sharp SST appears as the dynamical counterpart of a thermodynamic phase transition, which in turn has led, in the light of the Riemannian theory of chaos, to the development of a topological theory of phase transitions.


Subject(s)
Nonlinear Dynamics , Physics/methods , Kinetics , Models, Statistical , Models, Theoretical , Stochastic Processes , Thermodynamics , Time Factors
13.
Phys Rev Lett ; 92(6): 060601, 2004 Feb 13.
Article in English | MEDLINE | ID: mdl-14995226

ABSTRACT

For physical systems described by smooth, finite-range, and confining microscopic interaction potentials V with continuously varying coordinates, we announce and outline the proof of a theorem that establishes that, unless the equipotential hypersurfaces of configuration space Sum(v)=[(q(1),...,q(N)) subset R(N)/V(q(1),...,q(N))=v], v subset R, change topology at some v(c) in a given interval [v(0),v(1)] of values v of V, the Helmoltz free energy must be at least twice differentiable in the corresponding interval of inverse temperature (beta(v(0)),beta(v(1))) also in the N--> infinity limit. Thus, the occurrence of a phase transition at some beta(c)=beta(v(c)) is necessarily the consequence of the loss of diffeomorphicity among the [Sigma(v)](vv(c)), which is the consequence of the existence of critical points of V on Sigma(v=v(c)), that is, points where inverted Delta V=0.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(4 Pt 2): 046227, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12786480

ABSTRACT

The dynamics of the three coupled bosonic wells (trimer) containing N bosons is investigated within a standard (mean-field) semiclassical picture based on the coherent-state method. Various periodic solutions (configured as pi-like, dimerlike, and vortex states) representing collective modes are obtained analytically when the fixed points of trimer dynamics are identified on the N=const submanifold in the phase space. Hyperbolic, maximum and minimum points are recognized in the fixed-point set by studying the Hessian signature of the trimer Hamiltonian. The system dynamics in the neighborhood of periodic orbits (associated with fixed points) is studied via numeric integration of trimer motion equations, thus revealing a diffused chaotic behavior (not excluding the presence of regular orbits), macroscopic effects of population inversion, and self-trapping. In particular, the behavior of orbits with initial conditions close to the dimerlike periodic orbits shows how the self-trapping effect of dimerlike integrable subregimes is destroyed by the presence of chaos.

SELECTION OF CITATIONS
SEARCH DETAIL
...