Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
AIDS ; 37(1): 43-49, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36001527

ABSTRACT

OBJECTIVES: Broadly neutralizing antibodies have been proposed as key actors for HIV vaccine development. However, they display features of highly matured antibodies, hampering their induction by vaccination. As protective broadly neutralizing antibodies should be induced rapidly after vaccination and should neutralize the early-transmitted founder (T/F) viruses, we searched whether such antibodies may be induced following HIV infection. DESIGN: Sera were collected during acute infection (Day 0) and at viral set point (Month 6/12) and the neutralizing activity against T/F strains was investigated. Neutralizing activity in sera collected from chronic progressor was analyzed in parallel. METHODS: We compared neutralizing activity against T/F strains with neutralizing activity against non-T/F strains using the conventional TZM-bL neutralizing assay. RESULTS: We found neutralizing antibodies (nAbs) preferentially directed against T/F viruses in sera collected shortly after infection. This humoral response evolved by shifting to nAbs directed against non-T/F strains. CONCLUSION: Although features associated with nAbs directed against T/F viruses need further investigations, these early-induced nAbs may display lesser maturation characteristics; therefore, this might increase their interest for future vaccine designs.


Subject(s)
HIV Infections , Humans , HIV Infections/prevention & control , Broadly Neutralizing Antibodies
2.
SLAS Discov ; 27(4): 219-228, 2022 06.
Article in English | MEDLINE | ID: mdl-35058188

ABSTRACT

Huntington's disease (HD) is the most common monogenic neurodegenerative disease and is fatal. CAG repeat expansions in mutant Huntingtin (mHTT) exon 1 encode for polyglutamine (polyQ) stretches and influence age of onset and disease severity, depending on their length. mHTT is more structured compared to wild-type (wt) HTT, resulting in a decreased N-terminal conformational flexibility. mHTT inflexibility may contribute to both gain of function toxicity, due to increased mHTT aggregation propensity, but also to loss of function phenotypes, due to decreased interactions with binding partners. High-throughput-screening techniques to identify mHTT flexibility states and potential flexibility modifying small molecules are currently lacking. Here, we propose a novel approach for identifying small molecules that restore mHTT's conformational flexibility in human patient fibroblasts. We have applied a well-established antibody-based time-resolved Förster resonance energy transfer (TR-FRET) immunoassay, which measures endogenous HTT flexibility using two validated HTT-specific antibodies, to a high-throughput screening platform. By performing a small-scale compound screen, we identified several small molecules that can partially rescue mHTT inflexibility, presumably by altering HTT post-translational modifications. Thus, we demonstrated that the HTT TR-FRET immunoassay can be miniaturized and applied to a compound screening workflow in patient cells. This automated assay can now be used in large screening campaigns to identify previously unknown HD drugs and drug targets.


Subject(s)
Huntington Disease , Neurodegenerative Diseases , Fluorescence Resonance Energy Transfer , Humans , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Mutation , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
3.
Sci Transl Med ; 14(628): eabj7521, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34698500

ABSTRACT

The drivers of critical coronavirus disease 2019 (COVID-19) remain unknown. Given major confounding factors such as age and comorbidities, true mediators of this condition have remained elusive. We used a multi-omics analysis combined with artificial intelligence in a young patient cohort where major comorbidities were excluded at the onset. The cohort included 47 "critical" (in the intensive care unit under mechanical ventilation) and 25 "non-critical" (in a non-critical care ward) patients with COVID-19 and 22 healthy individuals. The analyses included whole-genome sequencing, whole-blood RNA sequencing, plasma and blood mononuclear cell proteomics, cytokine profiling, and high-throughput immunophenotyping. An ensemble of machine learning, deep learning, quantum annealing, and structural causal modeling were used. Patients with critical COVID-19 were characterized by exacerbated inflammation, perturbed lymphoid and myeloid compartments, increased coagulation, and viral cell biology. Among differentially expressed genes, we observed up-regulation of the metalloprotease ADAM9. This gene signature was validated in a second independent cohort of 81 critical and 73 recovered patients with COVID-19 and was further confirmed at the transcriptional and protein level and by proteolytic activity. Ex vivo ADAM9 inhibition decreased severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uptake and replication in human lung epithelial cells. In conclusion, within a young, otherwise healthy, cohort of individuals with COVID-19, we provide the landscape of biological perturbations in vivo where a unique gene signature differentiated critical from non-critical patients. We further identified ADAM9 as a driver of disease severity and a candidate therapeutic target.


Subject(s)
COVID-19 , ADAM Proteins , Artificial Intelligence , Humans , Intensive Care Units , Membrane Proteins , Respiration, Artificial , SARS-CoV-2
4.
SLAS Discov ; 26(7): 922-932, 2021 08.
Article in English | MEDLINE | ID: mdl-33896272

ABSTRACT

Oncogenic forms of KRAS proteins are known to be drivers of pancreatic, colorectal, and lung cancers. The goal of this study is to identify chemical leads that inhibit oncogenic KRAS signaling. We first developed an isogenic panel of mouse embryonic fibroblast (MEF) cell lines that carry wild-type RAS, oncogenic KRAS, and oncogenic BRAF. We validated these cell lines by screening against a tool compound library of 1402 annotated inhibitors in an adenosine triphosphate (ATP)-based cell viability assay. Subsequently, this MEF panel was used to conduct a high-throughput phenotypic screen in a cell viability assay with a proprietary compound library. All 126 compounds that exhibited a selective activity against mutant KRAS were selected and prioritized based on their activities in secondary assays. Finally, five chemical clusters were chosen. They had specific activity against SW620 and LS513 over Colo320 colorectal cancer cell lines. In addition, they had no effects on BRAFV600E, MEK1, extracellular signal-regulated kinase 2 (ERK2), phosphoinositide 3-kinase alpha (PI3Kα), AKT1, or mammalian target of rapamycin (mTOR) as tested in in vitro enzymatic activity assays. Biophysical assays demonstrated that these compounds did not bind directly to KRAS. We further identified the mechanism of action and showed that three of them have CDK9 inhibitory activity. In conclusion, we have developed and validated an isogenic MEF panel that was used successfully to identify RAS oncogenic or wild-type allele-specific vulnerabilities. Furthermore, we identified sensitivity of oncogenic KRAS-expressing cells to CDK9 inhibitors, which warrants future studies of treating KRAS-driven cancers with CDK9 inhibitors.


Subject(s)
Cyclin-Dependent Kinase 9/antagonists & inhibitors , Drug Discovery , Drug Screening Assays, Antitumor , Gene Expression Regulation, Neoplastic/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Drug Discovery/methods , Drug Screening Assays, Antitumor/methods , High-Throughput Screening Assays , Mice , Proto-Oncogene Proteins p21(ras)/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...