Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiovasc Res ; 119(1): 302-315, 2023 03 17.
Article in English | MEDLINE | ID: mdl-35020813

ABSTRACT

AIMS: Bioprosthetic heart valves (BHVs), made from glutaraldehyde-fixed heterograft materials, are subject to more rapid structural valve degeneration (SVD) in paediatric and young adult patients. Differences in blood biochemistries and propensity for disease accelerate SVD in these patients, which results in multiple re-operations with compounding risks. The goal of this study is to investigate the mechanisms of BHV biomaterial degeneration and present models for studying SVD in young patients and juvenile animal models. METHODS AND RESULTS: We studied SVD in clinical BHV explants from paediatric and young adult patients, juvenile sheep implantation model, rat subcutaneous implants, and an ex vivo serum incubation model. BHV biomaterials were analysed for calcification, collagen microstructure (alignment and crimp), and crosslinking density. Serum markers of calcification and tissue crosslinking were compared between young and adult subjects. We demonstrated that immature subjects were more susceptible to calcification, microstructural changes, and advanced glycation end products formation. In vivo and ex vivo studies comparing immature and mature subjects mirrored SVD in clinical observations. The interaction between host serum and BHV biomaterials leads to significant structural and biochemical changes which impact their functions. CONCLUSIONS: There is an increased risk for accelerated SVD in younger subjects, both experimental animals and patients. Increased calcification, altered collagen microstructure with loss of alignment and increased crimp periods, and increased crosslinking are three main characteristics in BHV explants from young subjects leading to SVD. Together, our studies establish a basis for assessing the increased susceptibility of BHV biomaterials to accelerated SVD in young patients.


Subject(s)
Bioprosthesis , Calcinosis , Heart Valve Prosthesis , Animals , Rats , Sheep , Heart Valves , Biocompatible Materials , Collagen
2.
J Am Heart Assoc ; 10(3): e018921, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33494616

ABSTRACT

Bioprosthetic heart valves (BHVs) largely circumvent the need for long-term anticoagulation compared with mechanical valves but are increasingly susceptible to deterioration and reduced durability with reoperation rates of ≈10% and 30% at 10 and 15 years, respectively. Structural valve degeneration is a common, unpreventable, and untreatable consequence of BHV implantation and is frequently characterized by leaflet calcification. However, 25% of BHV reoperations attributed to structural valve degeneration occur with minimal leaflet mineralization. This review discusses the noncalcific mechanisms of BHV structural valve degeneration, highlighting the putative roles and pathophysiological relationships between protein infiltration, glycation, oxidative and mechanical stress, and inflammation and the structural consequences for surgical and transcatheter BHVs.


Subject(s)
Bioprosthesis/adverse effects , Heart Valve Prosthesis/adverse effects , Calcinosis , Humans , Prosthesis Design , Prosthesis Failure , Risk Factors , Stress, Mechanical
3.
JACC Basic Transl Sci ; 5(8): 755-766, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32875167

ABSTRACT

Valvular heart diseases are associated with significant cardiovascular morbidity and mortality, and often require surgical and/or percutaneous repair or replacement. Valve replacement is limited to mechanical and biological prostheses, the latter of which circumvent the need for lifelong anticoagulation but are subject to structural valve degeneration (SVD) and failure. Although calcification is heavily studied, noncalcific SVD, which represent roughly 30% of BHV failures, is relatively underinvestigated. This original work establishes 2 novel and interacting mechanisms-glycation and serum albumin incorporation-that occur in clinical valves and are sufficient to induce hallmarks of structural degeneration as well as functional deterioration.

4.
Genome Res ; 28(9): 1415-1425, 2018 09.
Article in English | MEDLINE | ID: mdl-30061115

ABSTRACT

With the emergence of zebrafish as an important model organism, a concerted effort has been made to study its transcriptome. This effort is limited, however, by gaps in zebrafish annotation, which are especially pronounced concerning transcripts dynamically expressed during zygotic genome activation (ZGA). To date, short-read sequencing has been the principal technology for zebrafish transcriptome annotation. In part because these sequence reads are too short for assembly methods to resolve the full complexity of the transcriptome, the current annotation is rudimentary. By providing direct observation of full-length transcripts, recently refined long-read sequencing platforms can dramatically improve annotation coverage and accuracy. Here, we leveraged the SMRT platform to study the transcriptome of zebrafish embryos before and after ZGA. Our analysis revealed additional novelty and complexity in the zebrafish transcriptome, identifying 2539 high-confidence novel transcripts that originated from previously unannotated loci and 1835 high-confidence new isoforms in previously annotated genes. We validated these findings using a suite of computational approaches including structural prediction, sequence homology, and functional conservation analyses, as well as by confirmatory transcript quantification with short-read sequencing data. Our analyses provided insight into new homologs and paralogs of functionally important proteins and noncoding RNAs, isoform switching occurrences, and different classes of novel splicing events. Several novel isoforms representing distinct splicing events were validated through PCR experiments, including the discovery and validation of a novel 8-kb transcript spanning multiple mir-430 elements, an important driver of early development. Our study provides a significantly improved zebrafish transcriptome annotation resource.


Subject(s)
Molecular Sequence Annotation , Transcriptome , Zebrafish/genetics , Animals , Sequence Analysis, RNA/methods , Sequence Analysis, RNA/standards , Sequence Homology, Nucleic Acid
5.
Nat Commun ; 7: 11058, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-27009381

ABSTRACT

Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares.

6.
Structure ; 22(2): 353-60, 2014 Feb 04.
Article in English | MEDLINE | ID: mdl-24361270

ABSTRACT

Bromodomain functions as the acetyl-lysine binding domains to regulate gene transcription in chromatin. Bromodomains are rapidly emerging as new epigenetic drug targets for human diseases. However, owing to their transient nature and modest affinity, histone-binding selectivity of bromodomains has remained mostly elusive. Here, we report high-resolution crystal structures of the bromodomain-PHD tandem module of human transcriptional coactivator CBP bound to lysine-acetylated histone H4 peptides. The structures reveal that the PHD finger serves a structural role in the tandem module and that the bromodomain prefers lysine-acetylated motifs comprising a hydrophobic or aromatic residue at -2 and a lysine or arginine at -3 or -4 position from the acetylated lysine. Our study further provides structural insights into distinct modes of singly and diacetylated histone H4 recognition by the bromodomains of CBP and BRD4 that function differently as a transcriptional coactivator and chromatin organizer, respectively, explaining their distinct roles in control of gene expression in chromatin.


Subject(s)
Histones/chemistry , Peptide Fragments/chemistry , Sialoglycoproteins/chemistry , Amino Acid Motifs , Arginine/chemistry , Binding Sites , Chromatin/chemistry , Crystallography, X-Ray , Humans , Lysine/chemistry , Models, Molecular , Protein Binding , Protein Structure, Tertiary , Transcriptional Activation
7.
J Am Chem Soc ; 133(7): 2040-3, 2011 Feb 23.
Article in English | MEDLINE | ID: mdl-21271695

ABSTRACT

The CREB binding protein (CBP) is a human transcriptional coactivator consisting of several conserved functional modules, which interacts with distinct transcription factors including nuclear receptors, CREB, and STAT proteins. Despite the importance of CBP in transcriptional regulation, many questions regarding the role of its particular domains in CBP functions remain unanswered. Therefore, developing small molecules capable of selectively modulating a single domain of CBP is of invaluable aid at unraveling its prominent activities. Here we report the design, synthesis, and biological evaluation of conformationally restricted peptides as novel modulators for the acetyl-lysine binding bromodomain (BRD) of CBP. Utilizing a target structure-guided and computer-aided rational design approach, we developed a series of cyclic peptides with affinity for CBP BRD significantly greater than those of its biological ligands, including lysine-acetylated histones and tumor suppressor p53. The best cyclopeptide of the series exhibited a K(d) of 8.0 µM, representing a 24-fold improvement in affinity over that of the linear lysine 382-acetylated p53 peptide. This lead peptide is highly selective for CBP BRD over BRDs from other transcriptional proteins. Cell-based functional assays carried out in colorectal carcinoma HCT116 cells further demonstrated the efficacy of this compound to modulate p53 stability and function in response to DNA damage. Our results strongly argue that these CBP modulators can effectively inhibit p53 transcriptional activity by blocking p53K382ac binding to CBP BRD and promoting p53 instability by changes of its post-translational modification states, a different mechanism than that of the p53 inhibitors reported to date.


Subject(s)
CREB-Binding Protein/drug effects , Drug Design , Peptides, Cyclic/chemical synthesis , Tumor Suppressor Protein p53/antagonists & inhibitors , Cell Line, Tumor , Humans , Inhibitory Concentration 50 , Models, Molecular , Molecular Structure , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Structure-Activity Relationship
8.
J Cell Biochem ; 90(5): 1015-25, 2003 Dec 01.
Article in English | MEDLINE | ID: mdl-14624461

ABSTRACT

Basic fibroblast growth factor (FGF-2) and matrix metalloproteinases (MMPs) play key roles in vascular remodeling. Because FGF-2 controls a number of proteolytic activities in various cell types, we tested its effect on vascular endothelial cell expression of MMP-3 (stromelysin-1), a broad-spectrum proteinase implicated in coronary atherosclerosis. Endothelial cells (EC) from FGF-2-/- mice are highly responsive to exogenous FGF-2 and were therefore used for this study. The results showed that treatment of microvascular EC with human recombinant FGF-2 results in strong induction of MMP-3 mRNA and protein expression. Upregulation of MMP-3 mRNA by FGF-2 requires de novo protein synthesis and activation of the ERK-1/2 pathway. FGF-2 concentrations (5-10 ng/ml) that induce rapid and prolonged (24 h) activation of ERK-1/2 upregulate MMP-3 expression. In contrast, lower concentrations (1-2 ng/ml) that induce robust but transient (<8 h) ERK-1/2 activation are ineffective. Inhibition of ERK-1/2 activation at different times (-0.5 h to +8 h) of EC treatment with effective FGF-2 concentrations blocks MMP-3 upregulation. Thus, FGF-2 induces EC expression of MMP-3 with a threshold dose effect that requires sustained activation of the ERK-1/2 pathway. Because FGF-2 controls other EC functions with a linear dose effect, these features indicate a unique role of MMP-3 in vascular remodeling.


Subject(s)
Endothelium, Vascular/drug effects , Fibroblast Growth Factor 2/pharmacology , Matrix Metalloproteinase 3/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinases/metabolism , Animals , Blotting, Northern , Blotting, Western , Cells, Cultured , Endothelium, Vascular/enzymology , Enzyme Activation , Fibroblast Growth Factor 2/genetics , Humans , Matrix Metalloproteinase Inhibitors , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase 3 , RNA, Messenger/metabolism , Recombinant Proteins/pharmacology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...