Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Eur J Immunol ; 51(11): 2651-2664, 2021 11.
Article in English | MEDLINE | ID: mdl-34424997

ABSTRACT

Both B cells and T cells are involved in an effective immune response to SARS-CoV-2, the disease-causing virus of COVID-19. While B cells-with the indispensable help of CD4+ T cells-are essential to generate neutralizing antibodies, T cells on their own have been recognized as another major player in effective anti-SARS-CoV-2 immunity. In this report, we provide insights into the characteristics of individual HLA-A*02:01- and HLA-A*24:02-restricted SARS-CoV-2-reactive TCRs, isolated from convalescent COVID-19 patients. We observed that SARS-CoV-2-reactive T-cell populations were clearly detectable in convalescent samples and that TCRs isolated from these T cell clones were highly functional upon ectopic re-expression. The SARS-CoV-2-reactive TCRs described in this report mediated potent TCR signaling in reporter assays with low nanomolar EC50 values. We further demonstrate that these SARS-CoV-2-reactive TCRs conferred powerful T-cell effector function to primary CD8+ T cells as evident by a robust anti-SARS-CoV-2 IFN-γ response and in vitro cytotoxicity. We also provide an example of a long-lasting anti-SARS-CoV-2 memory response by reisolation of one of the retrieved TCRs 5 months after initial sampling. Taken together, these findings contribute to a better understanding of anti-SARS-CoV-2 T-cell immunity and may contribute to paving the way toward immunotherapeutics approaches targeting SARS-CoV-2.


Subject(s)
COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Humans , Immunologic Memory , Lymphocyte Activation/immunology
2.
Mol Psychiatry ; 26(10): 5733-5750, 2021 10.
Article in English | MEDLINE | ID: mdl-32632204

ABSTRACT

Mutations in pitrilysin metallopeptidase 1 (PITRM1), a mitochondrial protease involved in mitochondrial precursor processing and degradation, result in a slow-progressing syndrome characterized by cerebellar ataxia, psychotic episodes, and obsessive behavior, as well as cognitive decline. To investigate the pathogenetic mechanisms of mitochondrial presequence processing, we employed cortical neurons and cerebral organoids generated from PITRM1-knockout human induced pluripotent stem cells (iPSCs). PITRM1 deficiency strongly induced mitochondrial unfolded protein response (UPRmt) and enhanced mitochondrial clearance in iPSC-derived neurons. Furthermore, we observed increased levels of amyloid precursor protein and amyloid ß in PITRM1-knockout neurons. However, neither cell death nor protein aggregates were observed in 2D iPSC-derived cortical neuronal cultures. On the other hand, over time, cerebral organoids generated from PITRM1-knockout iPSCs spontaneously developed pathological features of Alzheimer's disease (AD), including the accumulation of protein aggregates, tau pathology, and neuronal cell death. Single-cell RNA sequencing revealed a perturbation of mitochondrial function in all cell types in PITRM1-knockout cerebral organoids, whereas immune transcriptional signatures were substantially dysregulated in astrocytes. Importantly, we provide evidence of a protective role of UPRmt and mitochondrial clearance against impaired mitochondrial presequence processing and proteotoxic stress. Here, we propose a novel concept of PITRM1-linked neurological syndrome whereby defects of mitochondrial presequence processing induce an early activation of UPRmt that, in turn, modulates cytosolic quality control pathways. Thus, our work supports a mechanistic link between mitochondrial function and common neurodegenerative proteinopathies.


Subject(s)
Alzheimer Disease , Induced Pluripotent Stem Cells , Alzheimer Disease/genetics , Amyloid beta-Peptides , Humans , Metalloendopeptidases , Mitochondria , Organoids
3.
Sci Rep ; 10(1): 6354, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286373

ABSTRACT

The malaria parasite replicates asexually in the red blood cells of its vertebrate host employing epigenetic mechanisms to regulate gene expression in response to changes in its environment. We used chromatin immunoprecipitation followed by sequencing in conjunction with RNA sequencing to create an epigenomic and transcriptomic map of the developmental transition from asexual blood stages to male and female gametocytes and to ookinetes in the rodent malaria parasite Plasmodium berghei. Across the developmental stages examined, heterochromatin protein 1 associates with variantly expressed gene families localised at subtelomeric regions and variant gene expression based on heterochromatic silencing is observed only in some genes. Conversely, the euchromatin mark histone 3 lysine 9 acetylation (H3K9ac) is abundant in non-heterochromatic regions across all developmental stages. H3K9ac presents a distinct pattern of enrichment around the start codon of ribosomal protein genes in all stages but male gametocytes. Additionally, H3K9ac occupancy positively correlates with transcript abundance in all stages but female gametocytes suggesting that transcription in this stage is independent of H3K9ac levels. This finding together with known mRNA repression in female gametocytes suggests a multilayered mechanism operating in female gametocytes in preparation for fertilization and zygote development, coinciding with parasite transition from host to vector.


Subject(s)
Epigenesis, Genetic/genetics , Histone Code/genetics , Malaria, Falciparum/genetics , Plasmodium falciparum/genetics , Acetylation , Animals , Chromatin/genetics , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/genetics , Fertilization/genetics , Gene Expression Regulation/genetics , Germ Cells/growth & development , Germ Cells/metabolism , Humans , Malaria, Falciparum/parasitology , Malaria, Falciparum/pathology , Plasmodium falciparum/growth & development , Plasmodium falciparum/pathogenicity , Protein Processing, Post-Translational/genetics , Sequence Analysis, RNA , Zygote/growth & development , Zygote/metabolism
4.
Int J Mol Sci ; 21(4)2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32085662

ABSTRACT

Mutations in more than 200 retina-specific genes have been associated with inherited retinal diseases. Genome editing represents a promising emerging field in the treatment of monogenic disorders, as it aims to correct disease-causing mutations within the genome. Genome editing relies on highly specific endonucleases and the capacity of the cells to repair double-strand breaks (DSBs). As DSB pathways are cell-cycle dependent, their activity in postmitotic retinal neurons, with a focus on photoreceptors, needs to be assessed in order to develop therapeutic in vivo genome editing. Three DSB-repair pathways are found in mammalian cells: Non-homologous end joining (NHEJ); microhomology-mediated end joining (MMEJ); and homology-directed repair (HDR). While NHEJ can be used to knock out mutant alleles in dominant disorders, HDR and MMEJ are better suited for precise genome editing, or for replacing entire mutation hotspots in genomic regions. Here, we analyzed transcriptomic in vivo and in vitro data and revealed that HDR is indeed downregulated in postmitotic neurons, whereas MMEJ and NHEJ are active. Using single-cell RNA sequencing analysis, we characterized the dynamics of DSB repair pathways in the transition from dividing cells to postmitotic retinal cells. Time-course bulk RNA-seq data confirmed DSB repair gene expression in both in vivo and in vitro samples. Transcriptomic DSB repair pathway profiles are very similar in adult human, macaque, and mouse retinas, but not in ground squirrel retinas. Moreover, human-induced pluripotent stem-cell-derived neurons and retinal organoids can serve as well suited in vitro testbeds for developing genomic engineering approaches in photoreceptors. Our study provides additional support for designing precise in vivo genome-editing approaches via MMEJ, which is active in mature photoreceptors.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair/genetics , Gene Editing , Gene Expression Profiling , Adult , Animals , Cell Cycle/genetics , Gene Expression Regulation , Genome , Humans , Induced Pluripotent Stem Cells/metabolism , Mammals/genetics , Mice , Photoreceptor Cells, Vertebrate/metabolism
5.
Nucleic Acids Res ; 48(1): e2, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31680162

ABSTRACT

The lack of endogenous RNAi machinery in the malaria parasite Plasmodium hampers gene annotation and hence antimalarial drug and vaccine development. Here, we engineered rodent Plasmodium berghei to express a minimal, non-canonical RNAi machinery that solely requires Argonaute 2 (Ago2) and a modified short hairpin RNA, so-called AgoshRNA. Using this strategy, we achieved robust and specific gene knockdown throughout the entire parasite life cycle. We also successfully silenced the endogenous gene perforin-like protein 2, phenocopying a full gene knockout. Transcriptionally restricting Ago2 expression to the liver stage further enabled us to perform a stage-specific gene knockout. The RNAi-competent Plasmodium lines reported here will be a valuable resource for loss-of-function phenotyping of the many uncharacterized genes of Plasmodium in low or high throughput, without the need to engineer the target gene locus. Thereby, our new strategy and transgenic Plasmodium lines will ultimately benefit the discovery of urgently needed antimalarial drug and vaccine candidates. Generally, the ability to render RNAi-negative organisms RNAi-competent by mere introduction of two components, Ago2 and AgoshRNA, is a unique paradigm that should find broad applicability in other species.


Subject(s)
Argonaute Proteins/genetics , Genetic Engineering/methods , Plasmodium berghei/genetics , Protozoan Proteins/genetics , RNA Interference , RNA, Small Interfering/genetics , Animals , Anopheles/parasitology , Argonaute Proteins/metabolism , Female , Genes, Reporter , Green Fluorescent Proteins/antagonists & inhibitors , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Life Cycle Stages/genetics , Mice , Mice, Inbred C57BL , Mosquito Vectors/parasitology , Organisms, Genetically Modified , Perforin/genetics , Perforin/metabolism , Plasmodium berghei/growth & development , Plasmodium berghei/metabolism , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/metabolism , RNA, Small Interfering/metabolism , Transgenes
6.
Cell Host Microbe ; 23(4): 557-569.e9, 2018 Apr 11.
Article in English | MEDLINE | ID: mdl-29649445

ABSTRACT

Underlying the development of malaria parasites within erythrocytes and the resulting pathogenicity is a hardwired program that secures proper timing of gene transcription and production of functionally relevant proteins. How stage-specific gene expression is orchestrated in vivo remains unclear. Here, using the assay for transposase accessible chromatin sequencing (ATAC-seq), we identified ∼4,000 regulatory regions in P. falciparum intraerythrocytic stages. The vast majority of these sites are located within 2 kb upstream of transcribed genes and their chromatin accessibility pattern correlates positively with abundance of the respective mRNA transcript. Importantly, these regions are sufficient to drive stage-specific reporter gene expression and DNA motifs enriched in stage-specific sets of regulatory regions interact with members of the P. falciparum AP2 transcription factor family. Collectively, this study provides initial insights into the in vivo gene regulatory network of P. falciparum intraerythrocytic stages and should serve as a valuable resource for future studies.


Subject(s)
Chromatin/metabolism , Erythrocytes/parasitology , Gene Expression Regulation , Gene Regulatory Networks , Plasmodium falciparum/growth & development , Plasmodium falciparum/genetics , Humans , Protein Binding , Transposases/metabolism
7.
Cell Host Microbe ; 23(3): 407-420.e8, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29503181

ABSTRACT

Heterochromatin-dependent gene silencing is central to the adaptation and survival of Plasmodium falciparum malaria parasites, allowing clonally variant gene expression during blood infection in humans. By assessing genome-wide heterochromatin protein 1 (HP1) occupancy, we present a comprehensive analysis of heterochromatin landscapes across different Plasmodium species, strains, and life cycle stages. Common targets of epigenetic silencing include fast-evolving multi-gene families encoding surface antigens and a small set of conserved HP1-associated genes with regulatory potential. Many P. falciparum heterochromatic genes are marked in a strain-specific manner, increasing the parasite's adaptive capacity. Whereas heterochromatin is strictly maintained during mitotic proliferation of asexual blood stage parasites, substantial heterochromatin reorganization occurs in differentiating gametocytes and appears crucial for the activation of key gametocyte-specific genes and adaptation of erythrocyte remodeling machinery. Collectively, these findings provide a catalog of heterochromatic genes and reveal conserved and specialized features of epigenetic control across the genus Plasmodium.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Epigenesis, Genetic/genetics , Epigenomics , Gene Expression Profiling , Heterochromatin/genetics , Plasmodium/genetics , Plasmodium/physiology , Adaptation, Physiological/genetics , Adaptation, Physiological/physiology , Animals , Antigenic Variation/genetics , Antigens, Protozoan/genetics , Cell Proliferation , Chromobox Protein Homolog 5 , Disease Models, Animal , Female , Gene Expression Regulation , Gene Silencing , Host-Parasite Interactions/genetics , Host-Parasite Interactions/physiology , Humans , Life Cycle Stages/genetics , Life Cycle Stages/physiology , Malaria, Falciparum/parasitology , Mice , Mice, Inbred BALB C , Parasites/genetics , Phylogeny , Plasmodium/classification , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Sex Differentiation
8.
Science ; 359(6381): 1259-1263, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29590075

ABSTRACT

Malaria is caused by Plasmodium parasites that proliferate in the bloodstream. During each replication cycle, some parasites differentiate into gametocytes, the only forms able to infect the mosquito vector and transmit malaria. Sexual commitment is triggered by activation of AP2-G, the master transcriptional regulator of gametocytogenesis. Heterochromatin protein 1 (HP1)-dependent silencing of ap2-g prevents sexual conversion in proliferating parasites. In this study, we identified Plasmodium falciparum gametocyte development 1 (GDV1) as an upstream activator of sexual commitment. We found that GDV1 targeted heterochromatin and triggered HP1 eviction, thus derepressing ap2-g Expression of GDV1 was responsive to environmental triggers of sexual conversion and controlled via a gdv1 antisense RNA. Hence, GDV1 appears to act as an effector protein that induces sexual differentiation by antagonizing HP1-dependent gene silencing.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Gametogenesis/genetics , Gene Silencing , Malaria, Falciparum/parasitology , Plasmodium falciparum/growth & development , Sex Differentiation/genetics , Animals , Chromobox Protein Homolog 5 , Plasmodium falciparum/genetics
9.
Sci Rep ; 6: 31965, 2016 08 24.
Article in English | MEDLINE | ID: mdl-27555062

ABSTRACT

Histones, by packaging and organizing the DNA into chromatin, serve as essential building blocks for eukaryotic life. The basic structure of the chromatin is established by four canonical histones (H2A, H2B, H3 and H4), while histone variants are more commonly utilized to alter the properties of specific chromatin domains. H3.3, a variant of histone H3, was found to have diverse localization patterns and functions across species but has been rather poorly studied in protists. Here we present the first genome-wide analysis of H3.3 in the malaria-causing, apicomplexan parasite, P. falciparum, which revealed a complex occupancy profile consisting of conserved and parasite-specific features. In contrast to other histone variants, PfH3.3 primarily demarcates euchromatic coding and subtelomeric repetitive sequences. Stable occupancy of PfH3.3 in these regions is largely uncoupled from the transcriptional activity and appears to be primarily dependent on the GC-content of the underlying DNA. Importantly, PfH3.3 specifically marks the promoter region of an active and poised, but not inactive antigenic variation (var) gene, thereby potentially contributing to immune evasion. Collectively, our data suggest that PfH3.3, together with other histone variants, indexes the P. falciparum genome to functionally distinct domains and contribute to a key survival strategy of this deadly pathogen.


Subject(s)
Histones/metabolism , Plasmodium falciparum/pathogenicity , Protozoan Proteins/metabolism , Virulence/genetics , Chromatin/chemistry , Chromatin/metabolism , Chromatin Immunoprecipitation , DNA, Protozoan/chemistry , DNA, Protozoan/metabolism , GC Rich Sequence , Gene Library , Genome, Protozoan , High-Throughput Nucleotide Sequencing , Histones/chemistry , Histones/genetics , Life Cycle Stages , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Promoter Regions, Genetic , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , RNA, Protozoan/chemistry , RNA, Protozoan/metabolism , Sequence Analysis, RNA
10.
EMBO Mol Med ; 5(6): 919-34, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23666755

ABSTRACT

Pigment cells and neuronal cells both are derived from the neural crest. Here, we describe the Pit-Oct-Unc (POU) domain transcription factor Brn3a, normally involved in neuronal development, to be frequently expressed in melanoma, but not in melanocytes and nevi. RNAi-mediated silencing of Brn3a strongly reduced the viability of melanoma cell lines and decreased tumour growth in vivo. In melanoma cell lines, inhibition of Brn3a caused DNA double-strand breaks as evidenced by Mre11/Rad50-containing nuclear foci. Activated DNA damage signalling caused stabilization of the tumour suppressor p53, which resulted in cell cycle arrest and apoptosis. When Brn3a was ectopically expressed in primary melanocytes and fibroblasts, anchorage-independent growth was increased. In tumourigenic melanocytes and fibroblasts, Brn3a accelerated tumour growth in vivo. Furthermore, Brn3a cooperated with proliferation pathways such as oncogenic BRAF, by reducing oncogene-induced senescence in non-malignant melanocytes. Together, these results identify Brn3a as a new factor in melanoma that is essential for melanoma cell survival and that promotes melanocytic transformation and tumourigenesis.


Subject(s)
Cell Cycle Checkpoints , Transcription Factor Brn-3A/metabolism , Apoptosis , Cell Line , Cell Proliferation , Cell Survival , Cell Transformation, Neoplastic , Cellular Senescence , DNA Breaks, Double-Stranded , Humans , Melanocytes/cytology , Melanocytes/metabolism , Melanoma/metabolism , Melanoma/pathology , Proto-Oncogene Proteins B-raf/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Transcription Factor Brn-3A/antagonists & inhibitors , Transcription Factor Brn-3A/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...