Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Biol ; 98(4): 1049-1058, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32243571

ABSTRACT

As a first attempt to assess bone health in cleaner fish production, wild and cultured ballan wrasse Labrus bergylta and lumpfish Cyclopterus lumpus were examined by radiology. In C. lumpus, wild fish (57%) had more vertebra deformities (≥1 deformed vertebrae) than cultured fish (2-16%). One wild C. lumpus had lordosis and another was missing the tail fin. In L. bergylta, wild fish (11%) had fewer vertebra deformities than cultured individuals (78-91%). Among the cultured L. bergylta, 17-53% of the fish had severe vertebra deformities (≥6 deformed vertebrae) with two predominate sites of location, one between vertebra 4 and 10 (S1) in the trunk, and one between 19 and 26 (S2) in the tail. Fusions dominated S1, while compressions dominated S2. Although wild L. bergylta had a low vertebra deformity level, 83% had calluses and 14% had fractures in haemal/neural spines and/or ribs. The site-specific appearance and pathology of fracture and callus in wild L. bergylta suggests these are induced by chronic mechanical stress, and a possible pathogenesis for fish hyperostosis is presented based on this notion. In conclusion, good bone health was documented in cultured C. lumpus, but cultured L. bergylta suffered poor bone health. How this affects survival, growth, swimming abilities and welfare in cultured wrasse should be further investigated. SIGNIFICANCE STATEMENT: Skeletal deformities were studied in ballan wrasse and lumpfish of both wild and cultured origin for the first time to identify potential welfare issues when deploying them as cleaner fish in salmon sea cages. While cultured lumpfish showed good bone health, cultured wrasse had a high occurrence of vertebra deformities, which is expected to impact lice eating efficiency and animal welfare negatively. These deformities are most likely induced early in development.


Subject(s)
Aquaculture/methods , Bone Diseases, Developmental/veterinary , Fish Diseases/pathology , Perciformes , Salmo salar/parasitology , Animals , Bone Diseases, Developmental/pathology
2.
Environ Pollut ; 242(Pt A): 500-506, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30005262

ABSTRACT

Mycotoxins are secondary metabolites produced by varieties of fungi that contaminate food and feed resources and are capable of inducing a wide range of toxicity. In the current study, we investigated developmental and behavioural toxicity in zebrafish larvae after exposure to six different mycotoxins; ochratoxin A (OTA), type A trichothecenes mycotoxin (T-2 toxin), type B trichothecenes mycotoxin (deoxynivalenol - DON), and zearalenone (ZEN) and its metabolites alpha-zearalenol (α-ZOL) and beta-zearalenol (ß-ZOL). Developmental defects, hatching time, and survival were monitored until 96 h post fertilisation (hpf). The EC50, LC50, and IC50 values were calculated. Subsequently, to assess behavioural toxicity, new sets of embryos were exposed to a series of non-lethal doses within the range of environmental and/or developmental concern. Results indicated that all the tested mycotoxins were toxic, they all induced developmental defects, and with the exception of OTA, all affected hatching time. Behavioural effects were only observed following exposure to OTA and ZEN and its metabolites, α ZOL and ß ZOL. These results demonstrate that mycotoxins are teratogenic and can influence behaviour in a vertebrate model.


Subject(s)
Behavior, Animal/drug effects , Larva/drug effects , Mycotoxins/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish/physiology , Animals , Food Contamination/analysis , Larva/growth & development , Ochratoxins , Trichothecenes , Zearalenone , Zeranol/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...