Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 298(2): 101550, 2022 02.
Article in English | MEDLINE | ID: mdl-34973333

ABSTRACT

The malaria-causing parasite Plasmodium falciparum is responsible for over 200 million infections and 400,000 deaths per year. At multiple stages during its complex life cycle, P. falciparum expresses several essential proteins tethered to its surface by glycosylphosphatidylinositol (GPI) anchors, which are critical for biological processes such as parasite egress and reinvasion of host red blood cells. Targeting this pathway therapeutically has the potential to broadly impact parasite development across several life stages. Here, we characterize an upstream component of parasite GPI anchor biosynthesis, the putative phosphomannomutase (PMM) (EC 5.4.2.8), HAD5 (PF3D7_1017400). We confirmed the PMM and phosphoglucomutase activities of purified recombinant HAD5 by developing novel linked enzyme biochemical assays. By regulating the expression of HAD5 in transgenic parasites with a TetR-DOZI-inducible knockdown system, we demonstrated that HAD5 is required for malaria parasite egress and erythrocyte reinvasion, and we assessed the role of HAD5 in GPI anchor synthesis by autoradiography of radiolabeled glucosamine and thin layer chromatography. Finally, we determined the three-dimensional X-ray crystal structure of HAD5 and identified a substrate analog that specifically inhibits HAD5 compared to orthologous human PMMs in a time-dependent manner. These findings demonstrate that the GPI anchor biosynthesis pathway is exceptionally sensitive to inhibition in parasites and that HAD5 has potential as a specific, multistage antimalarial target.


Subject(s)
Phosphotransferases (Phosphomutases) , Plasmodium falciparum , Protozoan Proteins , Animals , Erythrocytes/parasitology , Glycosylphosphatidylinositols/metabolism , Humans , Malaria, Falciparum/parasitology , Phosphotransferases (Phosphomutases)/genetics , Phosphotransferases (Phosphomutases)/metabolism , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
2.
Microbiol Insights ; 12: 1178636119848435, 2019.
Article in English | MEDLINE | ID: mdl-31205418

ABSTRACT

Widespread antimalarial drug resistance has prompted the need for new therapeutics and greater understanding of malaria parasite biology. To this end, the isoprenoid biosynthesis inhibitor fosmidomycin has been used to probe the metabolic regulation in the malaria parasite, Plasmodium falciparum. Genetic changes in the haloacid dehalogenase (HAD) superfamily member HAD2 conferred resistance to fosmidomycin, at the cost of decreased fitness. In the absence of fosmidomycin, parasites gained mutations to phosphofructokinase that restored growth and fosmidomycin sensitivity, thus revealing an intriguing example of plasticity in a core glycolytic process. Moreover, this study marks a second report of a HAD superfamily protein-modulating metabolic homeostasis in P falciparum parasites. Haloacid dehalogenase enzymes are distributed across all domains of life and have increasingly been found to influence central carbon metabolism and drug sensitivity in P falciparum. Investigating the mechanisms by which HAD superfamily members modulate metabolism may shed light on how metabolic networks are connected in apicomplexan parasites and other organisms and may guide future therapeutic endeavors.

3.
mBio ; 9(6)2018 11 13.
Article in English | MEDLINE | ID: mdl-30425143

ABSTRACT

In the malaria parasite Plasmodium falciparum, synthesis of isoprenoids from glycolytic intermediates is essential for survival. The antimalarial fosmidomycin (FSM) inhibits isoprenoid synthesis. In P. falciparum, we identified a loss-of-function mutation in HAD2 (P. falciparum 3D7_1226300 [PF3D7_1226300]) as necessary for FSM resistance. Enzymatic characterization revealed that HAD2, a member of the haloacid dehalogenase-like hydrolase (HAD) superfamily, is a phosphatase. Harnessing a growth defect in resistant parasites, we selected for suppression of HAD2-mediated FSM resistance and uncovered hypomorphic suppressor mutations in the locus encoding the glycolytic enzyme phosphofructokinase 9 (PFK9). Metabolic profiling demonstrated that FSM resistance is achieved via increased steady-state levels of methylerythritol phosphate (MEP) pathway and glycolytic intermediates and confirmed reduced PFK9 function in the suppressed strains. We identified HAD2 as a novel regulator of malaria parasite metabolism and drug sensitivity and uncovered PFK9 as a novel site of genetic metabolic plasticity in the parasite. Our report informs the biological functions of an evolutionarily conserved family of metabolic regulators and reveals a previously undescribed strategy by which malaria parasites adapt to cellular metabolic dysregulation.IMPORTANCE Unique and essential aspects of parasite metabolism are excellent targets for development of new antimalarials. An improved understanding of parasite metabolism and drug resistance mechanisms is urgently needed. The antibiotic fosmidomycin targets the synthesis of essential isoprenoid compounds from glucose and is a candidate for antimalarial development. Our report identifies a novel mechanism of drug resistance and further describes a family of metabolic regulators in the parasite. Using a novel forward genetic approach, we also uncovered mutations that suppress drug resistance in the glycolytic enzyme PFK9. Thus, we identify an unexpected genetic mechanism of adaptation to metabolic insult that influences parasite fitness and tolerance of antimalarials.


Subject(s)
Fosfomycin/analogs & derivatives , Hydrolases/metabolism , Phosphofructokinases/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Antimalarials/pharmacology , Drug Resistance/genetics , Fosfomycin/pharmacology , Hydrolases/genetics , Metabolomics , Plasmodium falciparum/drug effects , Terpenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...