Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Bioconjug Chem ; 34(12): 2275-2292, 2023 12 20.
Article in English | MEDLINE | ID: mdl-37882455

ABSTRACT

Oriented and covalent immobilization of proteins on magnetic nanoparticles (MNPs) is particularly challenging as it requires both the functionality of the protein and the colloidal stability of the MNPs to be preserved. Here, we describe a simple, straightforward, and efficient strategy for MNP functionalization with proteins using metal affinity binding. Our method involves a single-step process where MNPs are functionalized using a preformed, ready-to-use nitrilotriacetic acid-divalent metal cation (NTA-M2+) complex and polyethylene glycol (PEG) molecules. As a proof-of-concept, we demonstrate the oriented immobilization of a recombinant cadherin fragment engineered with a hexahistidine tag (6His-tag) onto the MNPs. Our developed methodology is simple and direct, enabling the oriented bioconjugation of His-tagged cadherins to MNPs while preserving protein functionality and the colloidal stability of the MNPs, and could be extended to other proteins expressing a polyhistidine tag. When compared to the traditional method where NTA is first conjugated to the MNPs and afterward free metal ions are added to form the complex, this novel strategy results in a higher functionalization efficiency while avoiding MNP aggregation. Additionally, our method allows for covalent bonding of the cadherin fragments to the MNP surface while preserving functionality, making it highly versatile. Finally, our strategy not only ensures the correct orientation of the protein fragments on the MNPs but also allows for the precise control of their density. This feature enables the selective targeting of E-cadherin-expressing cells only when MNPs are decorated with a high density of cadherin fragments.


Subject(s)
Magnetite Nanoparticles , Magnetite Nanoparticles/chemistry , Indicators and Reagents , Chelating Agents , Nitrilotriacetic Acid/chemistry , Cadherins/chemistry , Metals
2.
Bioconjug Chem ; 33(9): 1620-1633, 2022 09 21.
Article in English | MEDLINE | ID: mdl-35857350

ABSTRACT

In this work, we report the use of bioorthogonal chemistry, specifically the strain-promoted click azide-alkyne cycloaddition (SPAAC) for the covalent attachment of magnetic nanoparticles (MNPs) on living cell membranes. Four types of MNPs were prepared, functionalized with two different stabilizing/passivation agents (a polyethylene glycol derivative and a glucopyranoside derivative, respectively) and two types of strained alkynes with different reactivities: a cyclooctyne (CO) derivative and a dibenzocyclooctyne (DBCO) derivative. The MNPs were extensively characterized in terms of physicochemical characteristics, colloidal stability, and click reactivity in suspension. Then, the reactivity of the MNPs toward azide-modified surfaces was evaluated as a closer approach to their final application in a living cell scenario. Finally, the DBCO-modified MNPs, showing superior reactivity in suspension and on surfaces, were selected for cell membrane immobilization via the SPAAC reaction on the membranes of cells engineered to express azide artificial reporters. Overall, our work provides useful insights into the appropriate surface engineering of nanoparticles to ensure a high performance in terms of bioorthogonal reactivity for biological applications.


Subject(s)
Azides , Magnetite Nanoparticles , Alkynes/chemistry , Azides/chemistry , Cell Membrane , Click Chemistry , Cycloaddition Reaction , Polyethylene Glycols/chemistry
3.
ACS Appl Bio Mater ; 5(5): 1879-1889, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35179873

ABSTRACT

The simultaneous detection and quantification of several iron-containing species in biological matrices is a challenging issue. Especially in the frame of studies using magnetic nanoparticles for biomedical applications, no gold-standard technique has been described yet and combinations of different techniques are generally used. In this work, AC magnetic susceptibility measurements are used to analyze different organs from an animal model that received a single intratumor administration of magnetic nanoparticles. The protocol used for the quantification of iron associated with the magnetic nanoparticles is carefully described, including the description of the preparation of several calibration standard samples of nanoparticle suspensions with different degrees of dipolar interactions. The details for the quantitative analysis of other endogenous iron-containing species such as ferritin or hemoglobin are also described. Among the advantages of this technique are that tissue sample preparation is minimal and that large amounts of tissue can be characterized each time (up to hundreds of milligrams). In addition, the very high specificity of the magnetic measurements allows for tracking of the nanoparticle transformations. Furthermore, the high sensitivity of the instrumentation results in very low limits of detection for some of the iron-containing species. Therefore, the presented technique is an extremely valuable tool to track iron oxide magnetic nanoparticles in samples of biological origin.


Subject(s)
Ferritins , Magnetite Nanoparticles , Animals , Iron/metabolism , Magnetic Phenomena , Magnetics , Magnetite Nanoparticles/analysis
4.
Nanoscale ; 14(6): 2091-2118, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35103278

ABSTRACT

During the last decade, the possibility to remotely control intracellular pathways using physical tools has opened the way to novel and exciting applications, both in basic research and clinical applications. Indeed, the use of physical and non-invasive stimuli such as light, electricity or magnetic fields offers the possibility of manipulating biological processes with spatial and temporal resolution in a remote fashion. The use of magnetic fields is especially appealing for in vivo applications because they can penetrate deep into tissues, as opposed to light. In combination with magnetic actuators they are emerging as a new instrument to precisely manipulate biological functions. This approach, coined as magnetogenetics, provides an exclusive tool to study how cells transform mechanical stimuli into biochemical signalling and offers the possibility of activating intracellular pathways connected to temperature-sensitive proteins. In this review we provide a critical overview of the recent developments in the field of magnetogenetics. We discuss general topics regarding the three main components for magnetic field-based actuation: the magnetic fields, the magnetic actuators and the cellular targets. We first introduce the main approaches in which the magnetic field can be used to manipulate the magnetic actuators, together with the most commonly used magnetic field configurations and the physicochemical parameters that can critically influence the magnetic properties of the actuators. Thereafter, we discuss relevant examples of magneto-mechanical and magneto-thermal stimulation, used to control stem cell fate, to activate neuronal functions, or to stimulate apoptotic pathways, among others. Finally, although magnetogenetics has raised high expectations from the research community, to date there are still many obstacles to be overcome in order for it to become a real alternative to optogenetics for instance. We discuss some controversial aspects related to the insufficient elucidation of the mechanisms of action of some magnetogenetics constructs and approaches, providing our opinion on important challenges in the field and possible directions for the upcoming years.


Subject(s)
Magnetic Fields , Magnetics , Electricity , Neurons , Optogenetics
5.
Beilstein J Nanotechnol ; 12: 665-679, 2021.
Article in English | MEDLINE | ID: mdl-34327112

ABSTRACT

The exploitation of silver nanoparticles (AgNPs) in biomedicine represents more than one third of their overall application. Despite their wide use and significant amount of scientific data on their effects on biological systems, detailed insight into their in vivo fate is still lacking. This study aimed to elucidate the biotransformation patterns of AgNPs following oral administration. Colloidal stability, biochemical transformation, dissolution, and degradation behaviour of different types of AgNPs were evaluated in systems modelled to represent biological environments relevant for oral administration, as well as in cell culture media and tissue compartments obtained from animal models. A multimethod approach was employed by implementing light scattering (dynamic and electrophoretic) techniques, spectroscopy (UV-vis, atomic absorption, nuclear magnetic resonance) and transmission electron microscopy. The obtained results demonstrated that AgNPs may transform very quickly during their journey through different biological conditions. They are able to degrade to an ionic form and again reconstruct to a nanoparticulate form, depending on the biological environment determined by specific body compartments. As suggested for other inorganic nanoparticles by other research groups, AgNPs fail to preserve their specific integrity in in vivo settings.

6.
ACS Appl Mater Interfaces ; 13(11): 12982-12996, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33709682

ABSTRACT

Magnetic hyperthermia (MH) was used to treat a murine model of pancreatic cancer. This type of cancer is generally characterized by the presence of dense stroma that acts as a barrier for chemotherapeutic treatments. Several alternating magnetic field (AMF) conditions were evaluated using three-dimensional (3D) cell culture models loaded with magnetic nanoparticles (MNPs) to determine which conditions were producing a strong effect on the cell viability. Once the optimal AMF conditions were selected, in vivo experiments were carried out using similar frequency and field amplitude parameters. A marker of the immune response activation, calreticulin (CALR), was evaluated in cells from a xenograft tumor model after the MH treatment. Moreover, the distribution of nanoparticles within the tumor tissue was assessed by histological analysis of tumor sections, observing that the exposure to the alternating magnetic field resulted in the migration of particles toward the inner parts of the tumor. Finally, a relationship between an inadequate body biodistribution of the particles after their intratumoral injection and a significant decrease in the effectiveness of the MH treatment was found. Animals in which most of the particles remained in the tumor area after injection showed higher reductions in the tumor volume growth in comparison with those animals in which part of the particles were found also in the liver and spleen. Therefore, our results point out several factors that should be considered to improve the treatment effectiveness of pancreatic cancer by magnetic hyperthermia.


Subject(s)
Hyperthermia, Induced/methods , Magnetic Iron Oxide Nanoparticles , Pancreatic Neoplasms/therapy , Animals , Cell Line, Tumor , Humans , Immunity , Magnetic Fields , Magnetic Iron Oxide Nanoparticles/analysis , Male , Mice, Nude , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology
7.
Nanoscale Adv ; 3(5): 1261-1292, 2021 Mar 09.
Article in English | MEDLINE | ID: mdl-36132873

ABSTRACT

Bioorthogonal chemistry comprises chemical reactions that can take place inside complex biological environments, providing outstanding tools for the investigation and elucidation of biological processes. Its use in combination with nanotechnology can lead to further developments in diverse areas of biomedicine, such as molecular bioimaging, targeted delivery, in situ drug activation, study of cell-nanomaterial interactions, biosensing, etc. Here, we summarise the recent efforts to bring together the unique properties of nanoparticles and the remarkable features of bioorthogonal reactions to create a toolbox of new or improved biomedical applications. We show how, by joining forces, bioorthogonal chemistry and nanotechnology can overcome some of the key current limitations in the field of nanomedicine, providing better, faster and more sensitive nanoparticle-based bioimaging and biosensing techniques, as well as therapeutic nanoplatforms with superior efficacy.

8.
ACS Nano ; 15(1): 434-446, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33306343

ABSTRACT

Lipids are a major source of energy for most tissues, and lipid uptake and storage is therefore crucial for energy homeostasis. So far, quantification of lipid uptake in vivo has primarily relied on radioactive isotope labeling, exposing human subjects or experimental animals to ionizing radiation. Here, we describe the quantification of in vivo uptake of chylomicrons, the primary carriers of dietary lipids, in metabolically active tissues using magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS). We show that loading artificial chylomicrons (ACM) with iron oxide nanoparticles (IONPs) enables rapid and highly sensitive post hoc detection of lipid uptake in situ using MPS. Importantly, by utilizing highly magnetic Zn-doped iron oxide nanoparticles (ZnMNPs), we generated ACM with MPI tracer properties superseding the current gold-standard, Resovist, enabling quantification of lipid uptake from whole-animal scans. We focused on brown adipose tissue (BAT), which dissipates heat and can consume a large part of nutrient lipids, as a model for tightly regulated and inducible lipid uptake. High BAT activity in humans correlates with leanness and improved cardiometabolic health. However, the lack of nonradioactive imaging techniques is an important hurdle for the development of BAT-centered therapies for metabolic diseases such as obesity and type 2 diabetes. Comparison of MPI measurements with iron quantification by inductively coupled plasma mass spectrometry revealed that MPI rivals the performance of this highly sensitive technique. Our results represent radioactivity-free quantification of lipid uptake in metabolically active tissues such as BAT.


Subject(s)
Diabetes Mellitus, Type 2 , Adipose Tissue, Brown , Animals , Diagnostic Imaging , Humans , Lipoproteins , Magnetic Phenomena , Magnetic Resonance Imaging , Spectrum Analysis
9.
ACS Appl Mater Interfaces ; 12(39): 43474-43487, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32870658

ABSTRACT

Magnetic hyperthermia is a cancer treatment based on the exposure of magnetic nanoparticles to an alternating magnetic field in order to generate local heat. In this work, 3D cell culture models were prepared to observe the effect that a different number of internalized particles had on the mechanisms of cell death triggered upon the magnetic hyperthermia treatment. Macrophages were selected by their high capacity to uptake nanoparticles. Intracellular nanoparticle concentrations up to 7.5 pg Fe/cell were measured both by elemental analysis and magnetic characterization techniques. Cell viability after the magnetic hyperthermia treatment was decreased to <25% for intracellular iron contents above 1 pg per cell. Theoretical calculations of the intracellular thermal effects that occurred during the alternating magnetic field application indicated a very low increase in the global cell temperature. Different apoptotic routes were triggered depending on the number of internalized particles. At low intracellular magnetic nanoparticle amounts (below 1 pg Fe/cell), the intrinsic route was the main mechanism to induce apoptosis, as observed by the high Bax/Bcl-2 mRNA ratio and low caspase-8 activity. In contrast, at higher concentrations of internalized magnetic nanoparticles (1-7.5 pg Fe/cell), the extrinsic route was observed through the increased activity of caspase-8. Nevertheless, both mechanisms may coexist at intermediate iron concentrations. Knowledge on the different mechanisms of cell death triggered after the magnetic hyperthermia treatment is fundamental to understand the biological events activated by this procedure and their role in its effectiveness.


Subject(s)
Apoptosis/drug effects , Hyperthermia, Induced , Macrophages/drug effects , Magnetite Nanoparticles/chemistry , Animals , Cells, Cultured , Kinetics , Magnetic Fields , Mice , Monte Carlo Method , Particle Size , RAW 264.7 Cells , Surface Properties
10.
Colloids Surf B Biointerfaces ; 196: 111315, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32818926

ABSTRACT

Isolated iron oxide magnetic nanoparticles (MNPs), 12 nm in diameter, coated with oleic acid molecules as capping agents have been deposited by the Langmuir-Blodgett (LB) method onto a model cell membrane incorporating 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and Cholesterol (Chol) in the 1:1 ratio, which was also fabricated by the LB technique. Atomic Force Microscopy (AFM) experiments showed that the application of an alternating magnetic field results in the embedding of the MNPs through the phospholipidic layer. These experimental results reveal that the heating of individual MNPs may induce a local increase in the fluidity of the film with a large control of the spatial and temporal specificity.


Subject(s)
Heating , Magnetics , Cell Membrane , Magnetic Phenomena , Microscopy, Atomic Force
11.
Adv Drug Deliv Rev ; 138: 326-343, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30339825

ABSTRACT

Magnetic nanoparticles (MNPs) are promising tools for a wide array of biomedical applications. One of their most outstanding properties is the ability to generate heat when exposed to alternating magnetic fields, usually exploited in magnetic hyperthermia therapy of cancer. In this contribution, we provide a critical review of the use of MNPs and magnetic hyperthermia as drug release and gene expression triggers for cancer therapy. Several strategies for the release of chemotherapeutic drugs from thermo-responsive matrices are discussed, providing representative examples of their application at different levels (from proof of concept to in vivo applications). The potential of magnetic hyperthermia to promote in situ expression of therapeutic genes using vectors that contain heat-responsive promoters is also reviewed in the context of cancer gene therapy.


Subject(s)
Antineoplastic Agents/chemistry , Gene Expression Regulation, Neoplastic , Hyperthermia, Induced , Neoplasms/genetics , Neoplasms/therapy , Animals , Drug Liberation , Humans , Magnetic Fields , Temperature
12.
ACS Appl Mater Interfaces ; 10(51): 44301-44313, 2018 Dec 26.
Article in English | MEDLINE | ID: mdl-30480993

ABSTRACT

Magnetic hyperthermia is a promising therapy for the localized treatment of cancer based on the exposure of magnetic nanoparticles to an external alternating magnetic field. In order to evaluate some of the mechanisms involved in the cellular damage caused by this treatment, two different 3D cell culture models were prepared using collagen, which is the most abundant protein of the extracellular matrix. The same amount of nanoparticles was added to cells either before or after their incorporation into the 3D structure. Therefore, in one model, particles were located only inside cells (In model), while the other one had particles both inside and outside cells (In&Out model). In the In&Out model, the hyperthermia treatment facilitated the migration of the particles from the outer areas of the 3D structure to the inner parts, achieving a faster homogeneous distribution throughout the whole structure and allowing the particles to gain access to the inner cells. The cell death mechanism activated by the magnetic hyperthermia treatment was different in both models. Necrosis was observed in the In model and apoptosis in the In&Out model 24 h after the hyperthermia application. This was clearly correlated with the amount of nanoparticles located inside the cells. Thus, the combination of both 3D models allowed us to demonstrate two different roles of the magnetic particles during the hyperthermia treatment: (i) The modulation of the cell death mechanism depending on the amount of intracellular particles and (ii) the disruption of the collagen matrix caused by the extracellular nanoparticles.


Subject(s)
Cell Culture Techniques , Extracellular Matrix , Hyperthermia, Induced , Magnetite Nanoparticles , Models, Biological , Neoplasms , Cell Line, Tumor , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Humans , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/therapeutic use , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/therapy
13.
Colloids Surf B Biointerfaces ; 165: 315-324, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29501962

ABSTRACT

To improve the selectivity of magnetic nanoparticles for tumor treatment by hyperthermia, Fe3O4 nanoparticles have been functionalized with a peptide of the type arginine-glycine-aspartate (RGD) following a "click" chemistry approach. The RGD peptide was linked onto the previously coated nanoparticles in order to target αvß3 integrin receptors over-expressed in angiogenic cancer cells. Different coatings have been analyzed to enhance the biocompatibility of magnetic nanoparticles. Monodispersed and homogeneous magnetite nanoparticles have been synthesized by the seed growth method and have been characterized using X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, transmission electron microscopy and magnetic measurements. The magnetic hyperthermia efficiency of the nanoparticles has also been investigated and cytotoxicity assays have been perfomed for functionalized nanoparticles.


Subject(s)
Biomarkers, Tumor/metabolism , Ferrosoferric Oxide/chemistry , Hyperthermia, Induced , Integrin alphaVbeta3/metabolism , Magnetite Nanoparticles/administration & dosage , Oligopeptides/chemistry , Animals , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cell Survival/drug effects , Chlorocebus aethiops , Gene Expression , Humans , Integrin alphaVbeta3/genetics , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/ultrastructure , Protein Binding , Vero Cells
14.
ACS Appl Mater Interfaces ; 10(5): 4548-4560, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29328627

ABSTRACT

The protein corona formed on the surface of a nanoparticle in a biological medium determines its behavior in vivo. Herein, iron oxide nanoparticles containing the same core and shell, but bearing two different surface coatings, either glucose or poly(ethylene glycol), were evaluated. The nanoparticles' protein adsorption, in vitro degradation, and in vivo biodistribution and biotransformation over four months were investigated. Although both types of nanoparticles bound similar amounts of proteins in vitro, the differences in the protein corona composition correlated to the nanoparticles biodistribution in vivo. Interestingly, in vitro degradation studies demonstrated faster degradation for nanoparticles functionalized with glucose, whereas the in vivo results were opposite with accelerated biodegradation and clearance of the nanoparticles functionalized with poly(ethylene glycol). Therefore, the variation in the degradation rate observed in vivo could be related not only to the molecules attached to the surface, but also with the associated protein corona, as the key role of the adsorbed proteins on the magnetic core degradation has been demonstrated in vitro.


Subject(s)
Nanoparticles , Ferric Compounds , Protein Corona , Tissue Distribution
15.
Talanta ; 167: 51-58, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28340752

ABSTRACT

A highly sensitive and selective ratiometric sensor for the quantification of cyanide (CN-) in aqueous samples has been developed using spherical gold nanoparticles (AuNPs) stabilized by polysorbate 40 (PS-40). Three different AuNP sizes (14, 40 and 80nm mean diameters) were used to evaluate the response of the sensor using both colorimetric and Resonance Rayleigh Scattering (RRS) detection schemes. The best results were obtained for the sensor using 40nm AuNPs, for which the limits of detection (LODs) were found to be 100nmolL-1 in a benchtop instrument and 500nmolL-1 by the naked eye, values well below the maximum acceptable level for drinking water (1.9µmolL-1) set by the World Health Organization (WHO). The practical use of the 40nm-AuNPs RRS sensor was demonstrated with the determination of CN- in drinking and fresh waters. Finally, the sensor was successfully implemented in a compact portable device consisting of two light-emitting diodes (LEDs) and a miniature spectrometer, turning this sensor into a very potent tool for its application as a quick routine field-deployable analytical method.

16.
Anal Bioanal Chem ; 408(7): 1783-803, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26282487

ABSTRACT

In this critical review we discuss the most recent advances in the field of biosensing applications of magnetic glyconanoparticles. We first give an overview of the main synthetic routes to obtain magnetic-nanoparticle-carbohydrate conjugates and then we highlight their most promising applications for magnetic relaxation switching sensing, cell and pathogen detection, cell targeting and magnetic resonance imaging. We end with a critical perspective of the field, identifying the main challenges to be overcome, but also the areas where the most promising developments are likely to happen in the coming decades.


Subject(s)
Biosensing Techniques/methods , Carbohydrates/chemistry , Magnetic Resonance Imaging/methods , Magnets/chemistry , Nanoparticles/chemistry , Nanotechnology/methods , Animals , Carbohydrates/chemical synthesis , Cell Separation/methods , Cell Tracking/methods , Chemistry Techniques, Synthetic/methods , Humans , Magnetics/methods
17.
Anal Chem ; 87(20): 10547-55, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26383715

ABSTRACT

Conventional methods to determine the kinetic parameters for a certain reaction require multiple, separate isothermal experiments, resulting in time- and material-consuming processes. Here, an approach to determine the kinetic information within a single nonisothermal on-flow experiment is presented, consuming less than 10 µmol of reagents and having a total measuring time of typically 10 min. This approach makes use of a microfluidic NMR chip hyphenated to a continuous-flow microreactor and is based on the capabilities of the NMR chip to analyze subnanomole quantities of material in the 25 nL detection volume. Importantly, useful data are acquired from the microreactor platform in specific isothermal and nonisothermal frames. A model fitting the experimental data enables rapid determination of kinetic parameters, as demonstrated for a library of isoxazole and pyrazole derivatives.

18.
Nanoscale ; 7(18): 8233-60, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25877250

ABSTRACT

High aspect ratio magnetic nanomaterials possess anisotropic properties that make them attractive for biological applications. Their elongated shape enables multivalent interactions with receptors through the introduction of multiple targeting units on their surface, thus enhancing cell internalization. Moreover, due to their magnetic anisotropy, high aspect ratio nanomaterials can outperform their spherical analogues as contrast agents for magnetic resonance imaging (MRI) applications. In this review, we first describe the two main synthetic routes for the preparation of anisotropic magnetic nanomaterials: (i) direct synthesis (in which the anisotropic growth is directed by tuning the reaction conditions or by using templates) and (ii) assembly methods (in which the high aspect ratio is achieved by assembly from individual building blocks). We then provide an overview of the biomedical applications of anisotropic magnetic nanomaterials: magnetic separation and detection, targeted delivery and magnetic resonance imaging.


Subject(s)
Contrast Media/chemistry , Magnetic Resonance Imaging/methods , Nanocapsules/chemistry , Nanocapsules/ultrastructure , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Anisotropy , Electric Impedance , Electromagnetic Fields , Particle Size
19.
PLoS One ; 9(12): e115000, 2014.
Article in English | MEDLINE | ID: mdl-25502022

ABSTRACT

Monitoring extracellular matrix (ECM) components is one of the key methods used to determine tissue quality in three-dimensional (3D) scaffolds for regenerative medicine and clinical purposes. This is even more important when multipotent human bone marrow stromal cells (hMSCs) are used, as it could offer a method to understand in real time the dynamics of stromal cell differentiation and eventually steer it into the desired lineage. Magnetic Resonance Imaging (MRI) is a promising tool to overcome the challenge of a limited transparency in opaque 3D scaffolds. Technical limitations of MRI involve non-uniform background intensity leading to fluctuating background signals and therewith complicating quantifications on the retrieved images. We present a post-imaging processing sequence that is able to correct for this non-uniform background intensity. To test the processing sequence we investigated the use of MRI for in vitro monitoring of tissue growth in three-dimensional poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT) scaffolds. Results showed that MRI, without the need to use contrast agents, is a promising non-invasive tool to quantitatively monitor ECM production and cell distribution during in vitro culture in 3D porous tissue engineered constructs.


Subject(s)
Extracellular Matrix/ultrastructure , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Mesenchymal Stem Cells/ultrastructure , Regenerative Medicine/methods , Tissue Scaffolds , Analysis of Variance , Histological Techniques , Humans , Methylene Blue , Microscopy, Electron, Scanning , Polyethylene Glycols
20.
Nanoscale ; 6(19): 11246-58, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25132523

ABSTRACT

This study describes that the current rectification ratio, R ≡ |J|(-2.0 V)/|J|(+2.0 V) for supramolecular tunneling junctions with a top-electrode of eutectic gallium indium (EGaIn) that contains a conductive thin (0.7 nm) supporting outer oxide layer (Ga2O3), increases by up to four orders of magnitude under an applied bias of >+1.0 V up to +2.5 V; these junctions did not change their electrical characteristics when biased in the voltage range of ±1.0 V. The increase in R is caused by the presence of water and ions in the supramolecular assemblies which react with the Ga2O3/EGaIn layer and increase the thickness of the Ga2O3 layer. This increase in the oxide thickness from 0.7 nm to ∼2.0 nm changed the nature of the monolayer-top-electrode contact from an ohmic to a non-ohmic contact. These results unambiguously expose the experimental conditions that allow for a safe bias window of ±1.0 V (the range of biases studies of charge transport using this technique are normally conducted) to investigate molecular effects in molecular electronic junctions with Ga2O3/EGaIn top-electrodes where electrochemical reactions are not significant. Our findings also show that the interpretation of data in studies involving applied biases of >1.0 V may be complicated by electrochemical side reactions which can be recognized by changes of the electrical characteristics as a function voltage cycling or in current retention experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...