Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Res Commun ; 48(2): 1279-1284, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38175328

ABSTRACT

Porcine Post Weaning Diarrhoea (PWD) is one of the most important swine disease worldwide, caused by Enterotoxigenic Escherichia coli (ETEC) strains able to provoke management, welfare and sanitary issues. ETEC is determined by proteinaceous surface appendages. Numerous studies conducted by now in pigs have demonstrated, at the enterocytes level, that, the genes mucin 4 (MUC4) and fucosyltransferase (FUT1), coding for ETEC F4 and F18 receptors respectively, can be carriers of single nucleotide polymorphisms (SNPs) associated with natural resistance/susceptibility to PWD. The latter aspect was investigated in this study, evaluating the SNPs of the MUC4 and FUT1 genes in slaughtered pigs reared for the most in Central Italy. Genomic DNA was extracted from 362 swine diaphragmatic samples and then was subjected to the detection of known polymorphisms on MUC4 and FUT1candidate target genes by PCR-RFLP. Some of the identified SNPs were confirmed by sequencing analysis. Animals carrying the SNPs associated with resistance were 11% and 86% for the FUT1 and MUC4 genes respectively. Therefore, it can be assumed that the investigated animals may be an important resource and reservoir of favorable genetic traits for the breeding of pigs resistant to enterotoxigenic E.coli F4 variant.


Subject(s)
Enterotoxigenic Escherichia coli , Escherichia coli Infections , Swine Diseases , Swine , Animals , Escherichia coli Infections/genetics , Escherichia coli Infections/veterinary , Enterotoxigenic Escherichia coli/genetics , Diarrhea/genetics , Diarrhea/veterinary , Polymorphism, Single Nucleotide , Swine Diseases/genetics
2.
Animals (Basel) ; 13(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37570285

ABSTRACT

Porcine Reproductive and Respiratory Syndrome (PRRS) caused by the PRRS virus affects farmed pigs worldwide, causing direct and indirect losses. The most severe manifestations of PRRS infection are observed in piglets and pregnant sows. The clinical outcome of the infection depends on the PRRSV strain's virulence, the pregnancy state of the female, environmental factors, the presence of protective antibodies due to previous infections, and the host's genetic susceptibility. The latter aspect was investigated in this study, in particular, evaluating the most significant polymorphisms (SNPs) of the CD163 gene in slaughtered pigs reared in Central Italy. Total RNAs were extracted from 377 swine samples and subjected to RT-PCR targeted to the CD163 gene, followed by sequencing analysis. Contextually, the viral RNA was detected by RT-qPCR in order to phenotypically categorize animals into infected and not infected. In particular, 36 haplotypes were found, and their frequencies ranged from 0.13% to 35.15%. There were 62 resulting genotypes, three of which were associated with a putative resistance to the disease. Both the haplotypes and genotypes were inferred by PHASE v.2.1 software. To the best of our knowledge, this type of investigation was conducted for the first time on pig livestock distributed in different regions of Central Italy. Thus, the obtained findings may be considered very important since they add useful information about swine genetic background in relation to PRRS infection, from the perspective of adopting Marker-Assisted Selection (MAS) as a possible and alternative strategy to control this still widespread disease.

3.
BMC Vet Res ; 17(1): 133, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33766029

ABSTRACT

BACKGROUND: Comamonas kerstersii is rarely associated with infections in humans and has never been reported in animals until now. CASE PRESENTATION: Herein, we describe a case of urinary tract infection caused by C. kerstersii in a young goat. A seven-month-old male goat showed lethargy, generalised weakness and anorexia and in the last hours before its death, severe depression, slight abdominal distention, ruminal stasis, and sternal recumbency. Grossly, multifocal haemorrhages in different organs and tissues, subcutaneous oedema and hydrocele, serous fluid with scattered fibrin deposition on the serosa of the abdominal organs and severe pyelonephritis with multifocal renal infarction were detected. Histopathological examination confirmed severe chronic active pyelonephritis with renal infarcts, multi-organ vasculitis and thrombosis suggestive of an infectious diseases of bacterial origin. The bacterium was identified using routine methods, matrix assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS), and sequencing of the gyrB gene. CONCLUSIONS: To the best of our knowledge, this is the first report of C. kerstersii infection in animals (goat). Our findings support the possibility of C. kerstersii isolation from extraintestinal sites and suggest this organism as a possible cause of urinary tract infection.


Subject(s)
Comamonas/isolation & purification , Goat Diseases/microbiology , Urinary Tract Infections/veterinary , Animals , Comamonas/genetics , Goats , Gram-Negative Bacterial Infections/veterinary , Male , Pyelonephritis/veterinary , Urinary Tract Infections/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...