Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Magn Reson Med ; 72(1): 276-90, 2014 Jul.
Article in English | MEDLINE | ID: mdl-23904404

ABSTRACT

PURPOSE: To design and evaluate a modular transceiver coil array with 32 independent channels for cardiac MRI at 7.0T. METHODS: The modular coil array comprises eight independent building blocks, each containing four transceiver loop elements. Numerical simulations were used for B1 (+) field homogenization and radiofrequency (RF) safety validation. RF characteristics were examined in a phantom study. The array's suitability for accelerated high spatial resolution two-dimensional (2D) FLASH CINE imaging of the heart was examined in a volunteer study. RESULTS: Transmission field adjustments and RF characteristics were found to be suitable for the volunteer study. The signal-to-noise intrinsic to 7.0T together with the coil performance afforded a spatial resolution of 1.1 × 1.1 × 2.5 mm(3) for 2D CINE FLASH MRI, which is by a factor of 6 superior to standardized CINE protocols used in clinical practice at 1.5T. The 32-channel transceiver array supports one-dimensional acceleration factors of up to R = 4 without impairing image quality significantly. CONCLUSION: The modular 32-channel transceiver cardiac array supports accelerated and high spatial resolution cardiac MRI. The array is compatible with multichannel transmission and provides a technological basis for future clinical assessment of parallel transmission techniques at 7.0T.


Subject(s)
Heart , Magnetic Resonance Imaging, Cine/instrumentation , Adult , Computer Simulation , Equipment Design , Equipment Failure Analysis , Female , Healthy Volunteers , Humans , Image Enhancement/instrumentation , Male , Middle Aged , Phantoms, Imaging , Radio Waves , Transducers
2.
Neuroimage ; 61(3): 702-14, 2012 Jul 02.
Article in English | MEDLINE | ID: mdl-22504766

ABSTRACT

Spontaneous language has rarely been subjected to neuroimaging studies. This study therefore introduces a newly developed method for the analysis of linguistic phenomena observed in continuous language production during fMRI. Most neuroimaging studies investigating language have so far focussed on single word or - to a smaller extent - sentence processing, mostly due to methodological considerations. Natural language production, however, is far more than the mere combination of words to larger units. Therefore, the present study aimed at relating brain activation to linguistic phenomena like word-finding difficulties or syntactic completeness in a continuous language fMRI paradigm. A picture description task with special constraints was used to provoke hesitation phenomena and speech errors. The transcribed speech sample was segmented into events of one second and each event was assigned to one category of a complex schema especially developed for this purpose. The main results were: conceptual planning engages bilateral activation of the precuneus. Successful lexical retrieval is accompanied - particularly in comparison to unsolved word-finding difficulties - by the left middle and superior temporal gyrus. Syntactic completeness is reflected in activation of the left inferior frontal gyrus (IFG) (area 44). In sum, the method has proven to be useful for investigating the neural correlates of lexical and syntactic phenomena in an overt picture description task. This opens up new prospects for the analysis of spontaneous language production during fMRI.


Subject(s)
Brain/physiology , Language , Visual Perception/physiology , Adult , Aged , Brain Mapping , Decision Making/physiology , Female , Frontal Lobe/physiology , Functional Laterality/physiology , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/physiology , Observer Variation , Parietal Lobe/physiology , Photic Stimulation , Psycholinguistics , Semantics , Speech/physiology , Temporal Lobe/physiology
3.
J Magn Reson Imaging ; 36(2): 364-72, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22411274

ABSTRACT

PURPOSE: To investigate the feasibility of using magnetohydrodynamic (MHD) effects for synchronization of magnetic resonance imaging (MRI) with the cardiac cycle. MATERIALS AND METHODS: The MHD effect was scrutinized using a pulsatile flow phantom at B(0) = 7.0 T. MHD effects were examined in vivo in healthy volunteers (n = 10) for B(0) ranging from 0.05-7.0 T. Noncontrast-enhanced MR angiography (MRA) of the carotids was performed using a gated steady-state free-precession (SSFP) imaging technique in conjunction with electrocardiogram (ECG) and MHD synchronization. RESULTS: The MHD potential correlates with flow velocities derived from phase contrast MRI. MHD voltages depend on the orientation between B(0) and the flow of a conductive fluid. An increase in the interelectrode spacing along the flow increases the MHD potential. In vivo measurement of the MHD effect provides peak voltages of 1.5 mV for surface areas close to the common carotid artery at B(0) = 7.0 T. Synchronization of MRI with the cardiac cycle using MHD triggering is feasible. MHD triggered MRA of the carotids at 3.0 T showed an overall image quality and richness of anatomic detail, which is comparable to ECG-triggered MRAs. CONCLUSION: This feasibility study demonstrates the use of MHD effects for synchronization of MR acquisitions with the cardiac cycle.


Subject(s)
Cardiac-Gated Imaging Techniques/methods , Electrocardiography/methods , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Angiography/methods , Magnetic Resonance Imaging, Cine/methods , Magnetocardiography/methods , Feasibility Studies , Humans , Male , Middle Aged , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity , Young Adult
4.
Eur Radiol ; 21(10): 2187-92, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21647823

ABSTRACT

OBJECTIVE: The purpose of this study is to (i) design a small and mobile Magnetic field ALert SEnsor (MALSE), (ii) to carefully evaluate its sensors to their consistency of activation/deactivation and sensitivity to magnetic fields, and (iii) to demonstrate the applicability of MALSE in 1.5 T, 3.0 T and 7.0 T MR fringe field environments. METHODS: MALSE comprises a set of reed sensors, which activate in response to their exposure to a magnetic field. The activation/deactivation of reed sensors was examined by moving them in/out of the fringe field generated by 7TMR. RESULTS: The consistency with which individual reed sensors would activate at the same field strength was found to be 100% for the setup used. All of the reed switches investigated required a substantial drop in ambient magnetic field strength before they deactivated. CONCLUSIONS: MALSE is a simple concept for alerting MRI staff to a ferromagnetic object being brought into fringe magnetic fields which exceeds MALSEs activation magnetic field. MALSE can easily be attached to ferromagnetic objects within the vicinity of a scanner, thus creating a barrier for hazardous situations induced by ferromagnetic parts which should not enter the vicinity of an MR-system to occur.


Subject(s)
Electromagnetic Fields , Magnetic Resonance Imaging/methods , Equipment Design , Humans , Magnetic Fields , Magnetics/instrumentation , Occupational Health , Patient Safety
5.
J Magn Reson Imaging ; 33(3): 736-41, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21438067

ABSTRACT

PURPOSE: To design and evaluate a four-channel cardiac transceiver coil array for functional cardiac imaging at 7T. MATERIALS AND METHODS: A four-element cardiac transceiver surface coil array was developed with two rectangular loops mounted on an anterior former and two rectangular loops on a posterior former. specific absorption rate (SAR) simulations were performed and a B 1+ calibration method was applied prior to obtain 2D FLASH CINE (mSENSE, R = 2) images from nine healthy volunteers with a spatial resolution of up to 1 × 1 × 2.5 mm(3). RESULTS: Tuning and matching was found to be better than 10 dB for all subjects. The decoupling (S(21)) was measured to be >18 dB between neighboring loops, >20 dB for opposite loops, and >30 dB for other loop combinations. SAR values were well within the limits provided by the IEC. Imaging provided clinically acceptable signal homogeneity with an excellent blood-myocardium contrast applying the B 1+ calibration approach. CONCLUSION: A four-channel cardiac transceiver coil array for 7T was built, allowing for cardiac imaging with clinically acceptable signal homogeneity and an excellent blood-myocardium contrast. Minor anatomic structures, such as pericardium, mitral, and tricuspid valves and their apparatus, as well as trabeculae, were accurately delineated.


Subject(s)
Heart/physiology , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Absorption , Adult , Calibration , Contrast Media/pharmacology , Diagnostic Imaging/instrumentation , Diagnostic Imaging/methods , Equipment Design , Female , Humans , Male , Middle Aged , Myocardium/pathology , Reproducibility of Results
6.
J Cardiovasc Magn Reson ; 12: 67, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-21080933

ABSTRACT

BACKGROUND: To demonstrate the applicability of acoustic cardiac triggering (ACT) for imaging of the heart at ultrahigh magnetic fields (7.0 T) by comparing phonocardiogram, conventional vector electrocardiogram (ECG) and traditional pulse oximetry (POX) triggered 2D CINE acquisitions together with (i) a qualitative image quality analysis, (ii) an assessment of the left ventricular function parameter and (iii) an examination of trigger reliability and trigger detection variance derived from the signal waveforms. RESULTS: ECG was susceptible to severe distortions at 7.0 T. POX and ACT provided waveforms free of interferences from electromagnetic fields or from magneto-hydrodynamic effects. Frequent R-wave mis-registration occurred in ECG-triggered acquisitions with a failure rate of up to 30% resulting in cardiac motion induced artifacts. ACT and POX triggering produced images free of cardiac motion artefacts. ECG showed a severe jitter in the R-wave detection. POX also showed a trigger jitter of approximately Δt = 72 ms which is equivalent to two cardiac phases. ACT showed a jitter of approximately Δt = 5 ms only. ECG waveforms revealed a standard deviation for the cardiac trigger offset larger than that observed for ACT or POX waveforms.Image quality assessment showed that ACT substantially improved image quality as compared to ECG (image quality score at end-diastole: ECG = 1.7 ± 0.5, ACT = 2.4 ± 0.5, p = 0.04) while the comparison between ECG vs. POX gated acquisitions showed no significant differences in image quality (image quality score: ECG = 1.7 ± 0.5, POX = 2.0 ± 0.5, p = 0.34). CONCLUSIONS: The applicability of acoustic triggering for cardiac CINE imaging at 7.0 T was demonstrated. ACT's trigger reliability and fidelity are superior to that of ECG and POX. ACT promises to be beneficial for cardiovascular magnetic resonance at ultra-high field strengths including 7.0 T.


Subject(s)
Cardiac-Gated Imaging Techniques , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging, Cine , Oximetry , Phonocardiography , Vectorcardiography , Ventricular Function, Left , Adult , Artifacts , Humans , Middle Aged , Predictive Value of Tests , Reproducibility of Results , Young Adult
7.
Eur Radiol ; 20(12): 2844-52, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20640427

ABSTRACT

OBJECTIVES: Interest in cardiovascular magnetic resonance (CMR) at 7 T is motivated by the expected increase in spatial and temporal resolution, but the method is technically challenging. We examined the feasibility of cardiac chamber quantification at 7 T. METHODS: A stack of short axes covering the left ventricle was obtained in nine healthy male volunteers. At 1.5 T, steady-state free precession (SSFP) and fast gradient echo (FGRE) cine imaging with 7 mm slice thickness (STH) were used. At 7 T, FGRE with 7 mm and 4 mm STH were applied. End-diastolic volume, end-systolic volume, ejection fraction and mass were calculated. RESULTS: All 7 T examinations provided excellent blood/myocardium contrast for all slice directions. No significant difference was found regarding ejection fraction and cardiac volumes between SSFP at 1.5 T and FGRE at 7 T, while volumes obtained from FGRE at 1.5 T were underestimated. Cardiac mass derived from FGRE at 1.5 and 7 T was larger than obtained from SSFP at 1.5 T. Agreement of volumes and mass between SSFP at 1.5 T and FGRE improved for FGRE at 7 T when combined with an STH reduction to 4 mm. CONCLUSIONS: This pilot study demonstrates that cardiac chamber quantification at 7 T using FGRE is feasible and agrees closely with SSFP at 1.5 T.


Subject(s)
Cardiac-Gated Imaging Techniques/methods , Heart Ventricles/anatomy & histology , Image Enhancement/methods , Magnetic Resonance Imaging/methods , Humans , Male , Middle Aged , Pilot Projects , Reproducibility of Results , Sensitivity and Specificity , Young Adult
8.
Eur Radiol ; 20(6): 1344-55, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20013275

ABSTRACT

OBJECTIVE: As high-field cardiac MRI (CMR) becomes more widespread the propensity of ECG to interference from electromagnetic fields (EMF) and to magneto-hydrodynamic (MHD) effects increases and with it the motivation for a CMR triggering alternative. This study explores the suitability of acoustic cardiac triggering (ACT) for left ventricular (LV) function assessment in healthy subjects (n = 14). METHODS: Quantitative analysis of 2D CINE steady-state free precession (SSFP) images was conducted to compare ACT's performance with vector ECG (VCG). Endocardial border sharpness (EBS) was examined paralleled by quantitative LV function assessment. RESULTS: Unlike VCG, ACT provided signal traces free of interference from EMF or MHD effects. In the case of correct R-wave recognition, VCG-triggered 2D CINE SSFP was immune to cardiac motion effects-even at 3.0 T. However, VCG-triggered 2D SSFP CINE imaging was prone to cardiac motion and EBS degradation if R-wave misregistration occurred. ACT-triggered acquisitions yielded LV parameters (end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF) and left ventricular mass (LVM)) comparable with those derived from VCG-triggered acquisitions (1.5 T: ESV(VCG) = (56 +/- 17) ml, EDV(VCG) = (151 +/- 32) ml, LVM(VCG) = (97 +/- 27) g, SV(VCG) = (94 +/- 19) ml, EF(VCG) = (63 +/- 5)% cf. ESV(ACT) = (56 +/- 18) ml, EDV(ACT) = (147 +/- 36) ml, LVM(ACT) = (102 +/- 29) g, SV(ACT) = (91 +/- 22) ml, EF(ACT) = (62 +/- 6)%; 3.0 T: ESV(VCG) = (55 +/- 21) ml, EDV(VCG) = (151 +/- 32) ml, LVM(VCG) = (101 +/- 27) g, SV(VCG) = (96 +/- 15) ml, EF(VCG) = (65 +/- 7)% cf. ESV(ACT) = (54 +/- 20) ml, EDV(ACT) = (146 +/- 35) ml, LVM(ACT) = (101 +/- 30) g, SV(ACT) = (92 +/- 17) ml, EF(ACT) = (64 +/- 6)%). CONCLUSIONS: ACT's intrinsic insensitivity to interference from electromagnetic fields renders it suitable for clinical CMR.


Subject(s)
Cardiac-Gated Imaging Techniques/methods , Electrocardiography/methods , Magnetic Resonance Imaging, Cine/methods , Phonocardiography/methods , Ventricular Dysfunction, Left/diagnosis , Adult , Female , Humans , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity , Young Adult
9.
Invest Radiol ; 44(9): 539-47, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19652614

ABSTRACT

OBJECTIVES: To circumvent the challenges of conventional electrocardiographic (ECG)-gating by examining the efficacy of an MR stethoscope, which offers (i) no risk of high voltage induction or patient burns, (ii) immunity to electromagnetic interference, (iii) suitability for all magnetic field strengths, and (iv) patient comfort together with ease of use for the pursuit of reliable and safe (ultra)high field cardiac gated magnetic resonance imaging (MRI). MATERIALS AND METHODS: The acoustic gating device consists of 3 main components: an acoustic sensor, a signal processing unit, and a coupler unit to the MRI system. Signal conditioning and conversion are conducted outside the 0.5 mT line using dedicated electronic circuits. The final waveform is delivered to the internal physiological signal controller circuitry of a clinical MR scanner. Cardiovascular MRI was performed of normal volunteers (n = 17) on 1.5 T, 3.0 T and 7.0 T whole body MR systems. Black blood imaging, 2D CINE imaging, 3D phase contrast MR angiography, and myocardial T2* mapping were carried out. RESULTS: The MR-stethoscope provided cardiograms at 1.5 T, 3.0 T and 7.0 T free of interference from electromagnetic fields and magneto-hydrodynamic effects. In comparison, ECG waveforms were susceptible to T-wave elevation and other distortions, which were more pronounced at higher fields. Acoustically gated black blood imaging at 1.5 T and 3.0 T provided image quality comparable with or even superior to that obtained from the ECG-gated approach. In the case of correct R-wave recognition, ECG-gated 2D CINE SSFP imaging was found to be immune to cardiac motion effects -even at 3.0 T. However, ECG-gated 2D SSFP CINE imaging was prone to cardiac motion artifacts if R-wave mis-registration occurred because of T-wave elevation. Acoustically gated 3D PCMRA at 1.5 T, 3.0 T and 7.0 T resulted in images free of blood pulsation artifacts because the acoustic gating approach provided cardiac signal traces free of interference with electromagnetic fields or magneto-hydrodynamic effects even at 7.0 Tesla. Severe ECG-trace distortions and T-wave elevations occurred at 3.0 T and 7.0 T. Acoustically cardiac gated T2* mapping at 3.0 T yielded a T2* value of 22.3 +/- 4.8 ms for the inferoseptal myocardium. CONCLUSIONS: The proposed MR-stethoscope presents a promising alternative to currently available techniques for cardiac gating of (ultra)high field MRI. Its intrinsic insensitivity to interference from electromagnetic fields renders it suitable for clinical imaging because of its excellent trigger reliability, even at 7.0 Tesla.


Subject(s)
Cardiac-Gated Imaging Techniques/instrumentation , Image Enhancement/instrumentation , Magnetic Resonance Imaging/instrumentation , Phonocardiography/instrumentation , Stethoscopes , Adult , Artifacts , Equipment Design , Equipment Failure Analysis , Feasibility Studies , Female , Humans , Male
10.
Magn Reson Med ; 62(3): 822-8, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19526490

ABSTRACT

This study demonstrates the feasibility of applying free-breathing, cardiac-gated, susceptibility-weighted fast spin-echo imaging together with black blood preparation and navigator-gated respiratory motion compensation for anatomically accurate T2* mapping of the heart. First, T2* maps are presented for oil phantoms without and with respiratory motion emulation T2* = (22.1 +/- 1.7) ms at 1.5 T and T2* = (22.65 +/- 0.89) ms at 3.0 T). T2* relaxometry of a ferrofluid revealed relaxivities of R2* = (477.9 +/- 17) mM(-1)s(-1) and R2* = (449.6 +/- 13) mM(-1)s(-1) for UFLARE and multiecho gradient-echo imaging at 1.5 T. For inferoseptal myocardial regions mean T2* values of 29.9 +/- 6.6 ms (1.5 T) and 22.3 +/- 4.8 ms (3.0 T) were estimated. For posterior myocardial areas close to the vena cava T2*-values of 24.0 +/- 6.4 ms (1.5 T) and 15.4 +/- 1.8 ms (3.0 T) were observed. The merits and limitations of the proposed approach are discussed and its implications for cardiac and vascular T2*-mapping are considered.


Subject(s)
Algorithms , Artifacts , Cardiac-Gated Imaging Techniques/methods , Heart/anatomy & histology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Feasibility Studies , Humans , Reproducibility of Results , Sensitivity and Specificity , Spin Labels
SELECTION OF CITATIONS
SEARCH DETAIL
...