Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 14: 1294771, 2023.
Article in English | MEDLINE | ID: mdl-38088971

ABSTRACT

Multicellular organisms engage in complex ecological interactions with microorganisms, some of which are harmful to the host's health and fitness (e.g., pathogens or toxin-producing environmental microbiota), while others are either beneficial or have a neutral impact (as seen in components of host-associated microbiota). Although environmental microorganisms are generally considered to have no significant impact on animal fitness, there is evidence suggesting that exposure to these microbes might be required for proper immune maturation and research in vertebrates has shown that developing in a sterile environment detrimentally impacts health later in life. However, it remains uncertain whether such beneficial effects of environmental microorganisms are present in invertebrates that lack an adaptive immune system. In the present study, we conducted an experiment with field-collected Hydra oligactis, a cold-adapted freshwater cnidarian. We cultured these organisms in normal and autoclaved lake water at two distinct temperatures: 8°C and 12°C. Our findings indicated that polyps maintained in sterilized lake water displayed reduced population growth that depended on temperature, such that the effect was only present on 8°C. To better understand the dynamics of microbial communities both inhabiting polyps and their surrounding environment we conducted 16S sequencing before and after treatment, analyzing samples from both the polyps and the water. As a result of culturing in autoclaved lake water, the polyps showed a slightly altered microbiota composition, with some microbial lineages showing significant reduction in abundance, while only a few displayed increased abundances. The autoclaved lake water was recolonized, likely from the surface of hydra polyps, by a complex albeit different community of bacteria, some of which (such as Pseudomonas, Flavobacteriaceae) might be pathogenic to hydra. The abundance of the intracellular symbiont Polynucleobacter was positively related to hydra population size. These findings indicate that at low temperature environmental microbiota can enhance population growth rate in hydra, suggesting that environmental microorganisms can provide benefits to animals even in the absence of an adaptive immune system.

2.
PLoS Biol ; 21(1): e3001726, 2023 01.
Article in English | MEDLINE | ID: mdl-36689558

ABSTRACT

Most multicellular organisms harbor microbial colonizers that provide various benefits to their hosts. Although these microbial communities may be host species- or even genotype-specific, the associated bacterial communities can respond plastically to environmental changes. In this study, we estimated the relative contribution of environment and host genotype to bacterial community composition in Nematostella vectensis, an estuarine cnidarian. We sampled N. vectensis polyps from 5 different populations along a north-south gradient on the Atlantic coast of the United States and Canada. In addition, we sampled 3 populations at 3 different times of the year. While half of the polyps were immediately analyzed for their bacterial composition by 16S rRNA gene sequencing, the remaining polyps were cultured under laboratory conditions for 1 month. Bacterial community comparison analyses revealed that laboratory maintenance reduced bacterial diversity by 4-fold, but maintained a population-specific bacterial colonization. Interestingly, the differences between bacterial communities correlated strongly with seasonal variations, especially with ambient water temperature. To decipher the contribution of both ambient temperature and host genotype to bacterial colonization, we generated 12 clonal lines from 6 different populations in order to maintain each genotype at 3 different temperatures for 3 months. The bacterial community composition of the same N. vectensis clone differed greatly between the 3 different temperatures, highlighting the contribution of ambient temperature to bacterial community composition. To a lesser extent, bacterial community composition varied between different genotypes under identical conditions, indicating the influence of host genotype. In addition, we identified a significant genotype x environment interaction determining microbiota plasticity in N. vectensis. From our results we can conclude that N. vectensis-associated bacterial communities respond plastically to changes in ambient temperature, with the association of different bacterial taxa depending in part on the host genotype. Future research will reveal how this genotype-specific microbiota plasticity affects the ability to cope with changing environmental conditions.


Subject(s)
Microbiota , Sea Anemones , Animals , Sea Anemones/genetics , Sea Anemones/microbiology , Gene-Environment Interaction , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Genotype , Microbiota/genetics
3.
Environ Microbiol ; 24(12): 6392-6410, 2022 12.
Article in English | MEDLINE | ID: mdl-36250983

ABSTRACT

Marine sponges are known for their complex and stable microbiomes. However, the lack of a gnotobiotic sponge-model and experimental methods to manipulate both the host and the microbial symbionts currently limit our mechanistic understanding of sponge-microbial symbioses. We have used the North Atlantic sponge species Halichondria panicea to evaluate the use of antibiotics to generate gnotobiotic sponges. We further asked whether the microbiome can be reestablished via recolonization with the natural microbiome. Experiments were performed in marine gnotobiotic facilities equipped with a custom-made, sterile, flow-through aquarium system. Bacterial abundance dynamics were monitored qualitatively and quantitatively by 16 S rRNA gene amplicon sequencing and qPCR, respectively. Antibiotics induced dysbiosis by favouring an increase of opportunistic, antibiotic-resistant bacteria, resulting in more complex, but less specific bacteria-bacteria interactions than in untreated sponges. The abundance of the dominant symbiont, Candidatus Halichondribacter symbioticus, remained overall unchanged, reflecting its obligately symbiotic nature. Recolonization with the natural microbiome could not reverse antibiotic-induced dysbiosis. However, single bacterial taxa that were transferred, successfully recolonized the sponge and affected bacteria-bacteria interactions. By experimentally manipulating microbiome composition, we could show the stability of a sponge-symbiont clade despite microbiome dysbiosis. This study contributes to understanding both host-bacteria and bacteria-bacteria interactions in the sponge holobiont.


Subject(s)
Microbiota , Porifera , Rhodobacteraceae , Animals , Porifera/microbiology , Dysbiosis , Anti-Bacterial Agents , Microbiota/genetics , Symbiosis , Rhodobacteraceae/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics
4.
Microbiol Mol Biol Rev ; 86(4): e0005322, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36287022

ABSTRACT

Stony corals build the framework of coral reefs, ecosystems of immense ecological and economic importance. The existence of these ecosystems is threatened by climate change and other anthropogenic stressors that manifest in microbial dysbiosis such as coral bleaching and disease, often leading to coral mortality. Despite a significant amount of research, the mechanisms ultimately underlying these destructive phenomena, and what could prevent or mitigate them, remain to be resolved. This is mostly due to practical challenges in experimentation on corals and the highly complex nature of the coral holobiont that also includes bacteria, archaea, protists, and viruses. While the overall importance of these partners is well recognized, their specific contributions to holobiont functioning and their interspecific dynamics remain largely unexplored. Here, we review the potential of adopting model organisms as more tractable systems to address these knowledge gaps. We draw on parallels from the broader biological and biomedical fields to guide the establishment, implementation, and integration of new and emerging model organisms with the aim of addressing the specific needs of coral research. We evaluate the cnidarian models Hydra, Aiptasia, Cassiopea, and Astrangia poculata; review the fast-evolving field of coral tissue and cell cultures; and propose a framework for the establishment of "true" tropical reef-building coral models. Based on this assessment, we also suggest future research to address key aspects limiting our ability to understand and hence improve the response of reef-building corals to future ocean conditions.


Subject(s)
Anthozoa , Animals , Anthozoa/microbiology , Anthozoa/physiology , Ecosystem , Coral Reefs , Bacteria , Archaea
5.
Nat Commun ; 13(1): 3804, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35778405

ABSTRACT

At the current rate of climate change, it is unlikely that multicellular organisms will be able to adapt to changing environmental conditions through genetic recombination and natural selection alone. Thus, it is critical to understand alternative mechanisms that allow organisms to cope with rapid environmental changes. Here, we use the sea anemone Nematostella vectensis, which has evolved the capability of surviving in a wide range of temperatures and salinities, as a model to investigate the microbiota as a source of rapid adaptation. We long-term acclimate polyps of Nematostella to low, medium, and high temperatures, to test the impact of microbiota-mediated plasticity on animal acclimation. Using the same animal clonal line, propagated from a single polyp, allows us to eliminate the effects of the host genotype. The higher thermal tolerance of animals acclimated to high temperature can be transferred to non-acclimated animals through microbiota transplantation. The offspring fitness is highest from F0 females acclimated to high temperature and specific members of the acclimated microbiota are transmitted to the next generation. These results indicate that microbiota plasticity can contribute to animal thermal acclimation and its transmission to the next generation may represent a rapid mechanism for thermal adaptation.


Subject(s)
Microbiota , Sea Anemones , Acclimatization , Adaptation, Physiological , Animals , Climate Change , Microbiota/genetics , Sea Anemones/genetics
6.
Front Microbiol ; 13: 869666, 2022.
Article in English | MEDLINE | ID: mdl-35733963

ABSTRACT

The freshwater polyp Hydra viridissima (H. viridissima) harbors endosymbiotic Chlorella algae in addition to a species-specific microbiome. The molecular basis of the symbiosis between Hydra and Chlorella has been characterized to be metabolic in nature. Here, we studied the interaction between the extracellularly located microbiota and the algal photobiont, which resides in Hydra's endodermal epithelium, with main focus on Legionella bacterium. We aimed at evaluating the influence of the symbiotic algae on microbial colonization and in shaping the host microbiome. We report that the microbiome composition of symbiotic and aposymbiotic (algae free) H. viridissima is significantly different and dominated by Legionella spp. Hvir in aposymbiotic animals. Co-cultivation of these animals resulted in horizontal transmission of Legionella spp. Hvir bacteria from aposymbiotic to symbiotic animals. Acquisition of this bacterium increased the release of algae into ambient water. From there, algae could subsequently be taken up again by the aposymbiotic animals. The presence of algal symbionts had negative impact on Legionella spp. Hvir and resulted in a decrease of the relative abundance of this bacterium. Prolonged co-cultivation ultimately resulted in the disappearance of the Legionella spp. Hvir bacterium from the Hydra tissue. Our observations suggest an important role of the photobiont in controlling an invasive species in a metacommunity and, thereby, shaping the microbiome.

7.
Front Microbiol ; 13: 799333, 2022.
Article in English | MEDLINE | ID: mdl-35308397

ABSTRACT

Most animals co-exist with diverse host-associated microbial organisms that often form complex communities varying between individuals, habitats, species and higher taxonomic levels. Factors driving variation in the diversity of host-associated microbes are complex and still poorly understood. Here, we describe the bacterial composition of field-collected Hydra, a freshwater cnidarian that forms stable associations with microbial species in the laboratory and displays complex interactions with components of the microbiota. We sampled Hydra polyps from 21 Central European water bodies and identified bacterial taxa through 16S rRNA sequencing. We asked whether diversity and taxonomic composition of host-associated bacteria depends on sampling location, habitat type, host species or host reproductive mode (sexual vs. asexual). Bacterial diversity was most strongly explained by sampling location, suggesting that the source environment plays an important role in the assembly of bacterial communities associated with Hydra polyps. We also found significant differences between host species in their bacterial composition that partly mirrored variations observed in lab strains. Furthermore, we detected a minor effect of host reproductive mode on bacterial diversity. Overall, our results suggest that extrinsic (habitat identity) factors predict the diversity of host-associated bacterial communities more strongly than intrinsic (species identity) factors, however, only a combination of both factors determines microbiota composition in Hydra.

8.
Mol Biol Evol ; 39(2)2022 02 03.
Article in English | MEDLINE | ID: mdl-35084499

ABSTRACT

Considerable attention has recently been focused on the potential involvement of DNA methylation in regulating gene expression in cnidarians. Much of this work has been centered on corals, in the context of changes in methylation perhaps facilitating adaptation to higher seawater temperatures and other stressful conditions. Although first proposed more than 30 years ago, the possibility that DNA methylation systems function in protecting animal genomes against the harmful effects of transposon activity has largely been ignored since that time. Here, we show that transposons are specifically targeted by the DNA methylation system in cnidarians, and that the youngest transposons (i.e., those most likely to be active) are most highly methylated. Transposons in longer and highly active genes were preferentially methylated and, as transposons aged, methylation levels declined, reducing the potentially harmful side effects of CpG methylation. In Cnidaria and a range of other invertebrates, correlation between the overall extent of methylation and transposon content was strongly supported. Present transposon burden is the dominant factor in determining overall level of genomic methylation in a range of animals that diverged in or before the early Cambrian, suggesting that genome defense represents the ancestral role of CpG methylation.


Subject(s)
Cnidaria , DNA Methylation , Animals , Cnidaria/genetics , CpG Islands , Genome , Invertebrates/genetics
9.
Front Microbiol ; 12: 726795, 2021.
Article in English | MEDLINE | ID: mdl-34707584

ABSTRACT

Microbial communities confer multiple beneficial effects to their multicellular hosts. To evaluate the evolutionary and ecological implications of the animal-microbe interactions, it is essential to understand how bacterial colonization is secured and maintained during the transition from one generation to the next. However, the mechanisms of symbiont transmission are poorly studied for many species, especially in marine environments, where the surrounding water constitutes an additional source of microbes. Nematostella vectensis, an estuarine cnidarian, has recently emerged as model organism for studies on host-microbes interactions. Here, we use this model organism to study the transmission of bacterial colonizers, evaluating the contribution of parental and environmental transmission to the establishment of bacterial communities of the offspring. We induced spawning in adult male and female polyps of N. vectensis and used their gametes for five individual fertilization experiments. While embryos developed into primary polyps, we sampled each developmental stage and its corresponding medium samples. By analyzing the microbial community compositions of all samples through 16S rRNA gene amplicon sequencing, we showed that all host tissues harbor microbiota significantly different from the surrounding medium. Interestingly, oocytes and sperms are associated with distinct bacterial communities, indicating the specific vertical transmission of bacterial colonizers by the gametes. These differences were consistent among all the five families analyzed. By overlapping the identified bacterial ASVs associated with gametes, offspring and parents, we identified specific bacterial ASVs that are well supported candidates for vertical transmission via mothers and fathers. This is the first study investigating bacteria transmission in N. vectensis, and among few on marine spawners that do not brood larvae. Our results shed light on the consistent yet distinct maternal and paternal transfer of bacterial symbionts along the different life stages and generations of an aquatic invertebrate.

10.
Front Cell Dev Biol ; 9: 653792, 2021.
Article in English | MEDLINE | ID: mdl-34178983

ABSTRACT

Nuclear receptors (NRs) fulfill key roles in the coordination of postembryonal developmental transitions in animal species. They control the metamorphosis and sexual maturation in virtually all animals and by that the two main environmental-dependent developmental decision points. Sexual maturation and metamorphosis are controlled by steroid receptors and thyroid receptors, respectively in vertebrates, while both processes are orchestrated by the ecdysone receptor (EcR) in insects. The regulation of these processes depends on environmental factors like nutrition, temperature, or photoperiods and by that NRs form evolutionary conserved mediators of phenotypic plasticity. While the mechanism of action for metamorphosis and sexual maturation are well studied in model organisms, the evolution of these systems is not entirely understood and requires further investigation. We here review the current knowledge of NR involvement in metamorphosis and sexual maturation across the animal tree of life with special attention to environmental integration and evolution of the signaling mechanism. Furthermore, we compare commonalities and differences of the different signaling systems. Finally, we identify key gaps in our knowledge of NR evolution, which, if sufficiently investigated, would lead to an importantly improved understanding of the evolution of complex signaling systems, the evolution of life history decision points, and, ultimately, speciation events in the metazoan kingdom.

11.
Proc Natl Acad Sci U S A ; 117(35): 21459-21468, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32817436

ABSTRACT

Animal development has traditionally been viewed as an autonomous process directed by the host genome. But, in many animals, biotic and abiotic cues, like temperature and bacterial colonizers, provide signals for multiple developmental steps. Hydra offers unique features to encode these complex interactions of developmental processes with biotic and abiotic factors, and we used it here to investigate the impact of bacterial colonizers and temperature on the pattern formation process. In Hydra, formation of the head organizer involves the canonical Wnt pathway. Treatment with alsterpaullone (ALP) results in acquiring characteristics of the head organizer in the body column. Intriguingly, germfree Hydra polyps are significantly more sensitive to ALP compared to control polyps. In addition to microbes, ß-catenin-dependent pattern formation is also affected by temperature. Gene expression analyses led to the identification of two small secreted peptides, named Eco1 and Eco2, being up-regulated in the response to both Curvibacter sp., the main bacterial colonizer of Hydra, and low temperatures. Loss-of-function experiments revealed that Eco peptides are involved in the regulation of pattern formation and have an antagonistic function to Wnt signaling in Hydra.


Subject(s)
Hydra/genetics , Hydra/metabolism , beta Catenin/metabolism , Animals , Bacteria/metabolism , Body Patterning/genetics , Gene Expression Regulation, Developmental/genetics , Gene-Environment Interaction , Hydra/physiology , Peptides/metabolism , Temperature , Wnt Proteins/metabolism , Wnt Signaling Pathway/genetics , Wnt Signaling Pathway/physiology
12.
Microb Ecol ; 79(1): 252-257, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31187177

ABSTRACT

Biodiversity is generally believed to be a main determinant of ecosystem functioning. This principle also applies to the microbiome and could consequently contribute to host health. According to ecological theory, communities are shaped by top predators whose direct and indirect interactions with community members cause stability and diversity. Bdellovibrio and like organisms (BALOs) are a neglected group of predatory bacteria that feed on Gram-negative bacteria and can thereby influence microbiome composition. We asked whether BALOs can predict biodiversity levels in microbiomes from distinct host groups and environments. We demonstrate that genetic signatures of BALOs are commonly found within the 16S rRNA reads from diverse host taxa. In many cases, their presence, abundance, and especially richness are positively correlated with overall microbiome diversity. Our findings suggest that BALOs can act as drivers of microbial alpha-diversity and should therefore be considered candidates for the restoration of microbiomes and the prevention of dysbiosis.


Subject(s)
Bdellovibrio/physiology , Caenorhabditis elegans/microbiology , Drosophila melanogaster/microbiology , Hydra/microbiology , Microbiota , Porifera/microbiology , Animals , Bdellovibrio/classification , Bdellovibrio/genetics , Bdellovibrio/isolation & purification , Biodiversity , DNA, Bacterial/genetics , Host Specificity , Phylogeny , Porifera/classification , RNA, Ribosomal, 16S/genetics
13.
Microbiome ; 7(1): 133, 2019 09 14.
Article in English | MEDLINE | ID: mdl-31521200

ABSTRACT

BACKGROUND: The interplay between hosts and their associated microbiome is now recognized as a fundamental basis of the ecology, evolution, and development of both players. These interdependencies inspired a new view of multicellular organisms as "metaorganisms." The goal of the Collaborative Research Center "Origin and Function of Metaorganisms" is to understand why and how microbial communities form long-term associations with hosts from diverse taxonomic groups, ranging from sponges to humans in addition to plants. METHODS: In order to optimize the choice of analysis procedures, which may differ according to the host organism and question at hand, we systematically compared the two main technical approaches for profiling microbial communities, 16S rRNA gene amplicon and metagenomic shotgun sequencing across our panel of ten host taxa. This includes two commonly used 16S rRNA gene regions and two amplification procedures, thus totaling five different microbial profiles per host sample. CONCLUSION: While 16S rRNA gene-based analyses are subject to much skepticism, we demonstrate that many aspects of bacterial community characterization are consistent across methods. The resulting insight facilitates the selection of appropriate methods across a wide range of host taxa. Overall, we recommend single- over multi-step amplification procedures, and although exceptions and trade-offs exist, the V3 V4 over the V1 V2 region of the 16S rRNA gene. Finally, by contrasting taxonomic and functional profiles and performing phylogenetic analysis, we provide important and novel insight into broad evolutionary patterns among metaorganisms, whereby the transition of animals from an aquatic to a terrestrial habitat marks a major event in the evolution of host-associated microbial composition.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Metagenome/physiology , Microbiota/physiology , RNA, Ribosomal, 16S/genetics , Animals , Bacteria/classification , Bacteria/genetics , Databases, Genetic , Humans , Metagenome/genetics , Microbiota/genetics , Phylogeny
14.
Nat Commun ; 10(1): 3257, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31332174

ABSTRACT

How multicellular organisms assess and control their size is a fundamental question in biology, yet the molecular and genetic mechanisms that control organ or organism size remain largely unsolved. The freshwater polyp Hydra demonstrates a high capacity to adapt its body size to different temperatures. Here we identify the molecular mechanisms controlling this phenotypic plasticity and show that temperature-induced cell number changes are controlled by Wnt- and TGF-ß signaling. Further we show that insulin-like peptide receptor (INSR) and forkhead box protein O (FoxO) are important genetic drivers of size determination controlling the same developmental regulators. Thus, environmental and genetic factors directly affect developmental mechanisms in which cell number is the strongest determinant of body size. These findings identify the basic mechanisms as to how size is regulated on an organismic level and how phenotypic plasticity is integrated into conserved developmental pathways in an evolutionary informative model organism.


Subject(s)
Body Size/physiology , Hydra/metabolism , Receptor, Insulin/metabolism , Signal Transduction/physiology , Transforming Growth Factor beta/metabolism , Wnt Signaling Pathway/physiology , Animals , Body Size/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Hydra/genetics , Hydra/growth & development , Insulin/metabolism , Receptor, Insulin/genetics , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction/genetics , Temperature , Transforming Growth Factor beta/genetics , Wnt Signaling Pathway/genetics
15.
PLoS Biol ; 17(6): e3000298, 2019 06.
Article in English | MEDLINE | ID: mdl-31216282

ABSTRACT

Almost all animals and plants are inhabited by diverse communities of microorganisms, the microbiota, thereby forming an integrated entity, the metaorganism. Natural selection should favor hosts that shape the community composition of these microbes to promote a beneficial host-microbe symbiosis. Indeed, animal hosts often pose selective environments, which only a subset of the environmentally available microbes are able to colonize. How these microbes assemble after colonization to form the complex microbiota is less clear. Neutral models are based on the assumption that the alternatives in microbiota community composition are selectively equivalent and thus entirely shaped by random population dynamics and dispersal. Here, we use the neutral model as a null hypothesis to assess microbiata composition in host organisms, which does not rely on invoking any adaptive processes underlying microbial community assembly. We show that the overall microbiota community structure from a wide range of host organisms, in particular including previously understudied invertebrates, is in many cases consistent with neutral expectations. Our approach allows to identify individual microbes that are deviating from the neutral expectation and are therefore interesting candidates for further study. Moreover, using simulated communities, we demonstrate that transient community states may play a role in the deviations from the neutral expectation. Our findings highlight that the consideration of neutral processes and temporal changes in community composition are critical for an in-depth understanding of microbiota-host interactions.


Subject(s)
Microbiota , Animals , Humans , Models, Theoretical , Plants , Symbiosis
16.
Zoology (Jena) ; 133: 81-87, 2019 04.
Article in English | MEDLINE | ID: mdl-30979392

ABSTRACT

Current research highlights the importance of associated microbes in contributing to the functioning, health, and even adaptation of their animal, plant, and fungal hosts. As such, we are witnessing a shift in research that moves away from focusing on the eukaryotic host sensu stricto to research into the complex conglomerate of the host and its associated microorganisms (i.e., microbial eukaryotes, archaea, bacteria, and viruses), the so-called metaorganism, as the biological entity. While recent research supports and encourages the adoption of such an integrative view, it must be understood that microorganisms are not involved in all host processes and not all associated microorganisms are functionally important. As such, our intention here is to provide a critical review and evaluation of perspectives and limitations relevant to studying organisms in a metaorganism framework and the functional toolbox available to do so. We note that marker gene-guided approaches that primarily characterize microbial diversity are a first step in delineating associated microbes but are not sufficient to establish proof of their functional relevance. More sophisticated tools and experiments are necessary to reveal the specific functions of associated microbes. This can be accomplished through the study of metaorganisms in less complex environments, the targeted manipulation of microbial associates, or work at the mechanistic level with the toolbox available in model systems. We conclude that the metaorganism framework is a powerful new concept to help provide answers to longstanding biological questions such as the evolution and ecology of organismal complexity and the importance of organismal symbioses to ecosystem functioning. The intricacy of the metaorganism requires a holistic framework combining reductionist and integrative approaches to resolve the structure and function of its member species and to disclose the various roles that microorganisms play in the biology of their hosts.


Subject(s)
Microbiota , Animals , Symbiosis
17.
Elife ; 72018 05 31.
Article in English | MEDLINE | ID: mdl-29848439

ABSTRACT

Many multicellular organisms rely on symbiotic associations for support of metabolic activity, protection, or energy. Understanding the mechanisms involved in controlling such interactions remains a major challenge. In an unbiased approach we identified key players that control the symbiosis between Hydra viridissima and its photosynthetic symbiont Chlorella sp. A99. We discovered significant up-regulation of Hydra genes encoding a phosphate transporter and glutamine synthetase suggesting regulated nutrition supply between host and symbionts. Interestingly, supplementing the medium with glutamine temporarily supports in vitro growth of the otherwise obligate symbiotic Chlorella, indicating loss of autonomy and dependence on the host. Genome sequencing of Chlorella sp. A99 revealed a large number of amino acid transporters and a degenerated nitrate assimilation pathway, presumably as consequence of the adaptation to the host environment. Our observations portray ancient symbiotic interactions as a codependent partnership in which exchange of nutrients appears to be the primary driving force.


Subject(s)
Biological Evolution , Chlorella/metabolism , Hydra/metabolism , Symbiosis , Animals , Chlorella/drug effects , Chlorella/genetics , Conserved Sequence , Darkness , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gene Expression Regulation , Genome , Hydra/drug effects , Hydra/genetics , Hydra/growth & development , Molecular Sequence Annotation , Nitrates/metabolism , Nitrogen/metabolism , Photosynthesis/genetics , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 18S/metabolism , Species Specificity , Sugars/pharmacology , Symbiosis/drug effects , Symbiosis/genetics
18.
Front Microbiol ; 9: 728, 2018.
Article in English | MEDLINE | ID: mdl-29740401

ABSTRACT

The maintenance and resilience of host-associated microbiota during development is a fundamental process influencing the fitness of many organisms. Several host properties were identified as influencing factors on bacterial colonization, including the innate immune system, mucus composition, and diet. In contrast, the importance of bacteria-bacteria interactions on host colonization is less understood. Here, we use bacterial abundance data of the marine model organism Nematostella vectensis to reconstruct potential bacteria-bacteria interactions through co-occurrence networks. The analysis indicates that bacteria-bacteria interactions are dynamic during host colonization and change according to the host's developmental stage. To assess the predictive power of inferred interactions, we tested bacterial isolates with predicted cooperative or competitive behavior for their ability to influence bacterial recolonization dynamics. Within 3 days of recolonization, all tested bacterial isolates affected bacterial community structure, while only competitive bacteria increased bacterial diversity. Only 1 week after recolonization, almost no differences in bacterial community structure could be observed between control and treatments. These results show that predicted competitive bacteria can influence community structure for a short period of time, verifying the in silico predictions. However, within 1 week, the effects of the bacterial isolates are neutralized, indicating a high degree of resilience of the bacterial community.

19.
Front Microbiol ; 9: 629, 2018.
Article in English | MEDLINE | ID: mdl-29666616

ABSTRACT

The aging process is considered to be the result of accumulating cellular deterioration in an individual organism over time. It can be affected by the combined influence of genetic, epigenetic, and environmental factors including life-style-associated events. In the non-senescent freshwater polyp Hydra, one of the classical model systems for evolutionary developmental biology and regeneration, transcription factor FoxO modulates both stem cell proliferation and innate immunity. This provides strong support for the role of FoxO as a critical rate-of-aging regulator. However, how environmental factors interact with FoxO remains unknown. Here, we find that deficiency in FoxO signaling in Hydra leads to dysregulation of antimicrobial peptide expression and that FoxO loss-of-function polyps are impaired in selection for bacteria resembling the native microbiome and more susceptible to colonization of foreign bacteria. These findings reveal a key role of FoxO signaling in the communication between host and microbiota and embed the evolutionary conserved longevity factor FoxO into the holobiont concept.

20.
Zoology (Jena) ; 127: 1-19, 2018 04.
Article in English | MEDLINE | ID: mdl-29599012

ABSTRACT

From protists to humans, all animals and plants are inhabited by microbial organisms. There is an increasing appreciation that these resident microbes influence the fitness of their plant and animal hosts, ultimately forming a metaorganism consisting of a uni- or multicellular host and a community of associated microorganisms. Research on host-microbe interactions has become an emerging cross-disciplinary field. In both vertebrates and invertebrates a complex microbiome confers immunological, metabolic and behavioural benefits; conversely, its disturbance can contribute to the development of disease states. However, the molecular and cellular mechanisms controlling the interactions within a metaorganism are poorly understood and many key interactions between the associated organisms remain unknown. In this perspective article, we outline some of the issues in interspecies interactions and in particular address the question of how metaorganisms react and adapt to inputs from extreme environments such as deserts, the intertidal zone, oligothrophic seas, and hydrothermal vents.


Subject(s)
Adaptation, Physiological , Extreme Environments , Microbiota/physiology , Adaptation, Physiological/physiology , Animals , Ecosystem , Microbiota/genetics , Phylogeny , Symbiosis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...