Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
RNA ; 29(6): 777-789, 2023 06.
Article in English | MEDLINE | ID: mdl-36810234

ABSTRACT

N6-methyladenosine (m6A) in mRNA regulates almost every stage in the mRNA life cycle, and the development of methodologies for the high-throughput detection of methylated sites in mRNA using m6A-specific methylated RNA immunoprecipitation with next-generation sequencing (MeRIPSeq) or m6A individual-nucleotide-resolution cross-linking and immunoprecipitation (miCLIP) have revolutionized the m6A research field. Both of these methods are based on immunoprecipitation of fragmented mRNA. However, it is well documented that antibodies often have nonspecific activities, thus verification of identified m6A sites using an antibody-independent method would be highly desirable. We mapped and quantified the m6A site in the chicken ß-actin zipcode based on the data from chicken embryo MeRIPSeq results and our RNA-Epimodification Detection and Base-Recognition (RedBaron) antibody-independent assay. We also demonstrated that methylation of this site in the ß-actin zipcode enhances ZBP1 binding in vitro, while methylation of a nearby adenosine abolishes binding. This suggests that m6A may play a role in regulating localized translation of ß-actin mRNA, and the ability of m6A to enhance or inhibit a reader protein's RNA binding highlights the importance of m6A detection at nucleotide resolution.


Subject(s)
Actins , Chickens , Animals , Chick Embryo , RNA, Messenger/genetics , RNA, Messenger/metabolism , Actins/genetics , Chickens/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA/metabolism , Antibodies , Nucleotides/metabolism
2.
Neuropathol Appl Neurobiol ; 49(1): e12885, 2023 02.
Article in English | MEDLINE | ID: mdl-36709989

ABSTRACT

AIMS: N6 -methyladenosine modification of RNA (m6 A) regulates translational control, which may influence neuronal dysfunction underlying neurodegenerative diseases. METHODS: Using microscopy and a machine learning approach, we performed cellular profiling of m6 A-RNA abundance and YTHDF1/YTHDF3 m6 A reader expression within four regions of the human brain from non-affected individuals and individuals with Parkinson's disease, dementia with Lewy bodies or mild cognitive impairment (MCI). RESULTS: In non-diseased tissue, we found that m6 A-modified RNAs showed cell-type and sub-compartment-specific variation. YTHDF1 and YTHDF3 showed opposing expression patterns in the cerebellum and the frontal and cingulate cortices. Machine learning quantitative image analysis revealed that m6 A-modified transcripts were significantly altered in localisation and abundance in disease tissue with significant decreases in m6 A-RNAs in Parkinson's disease, and significant increases in m6 A-RNA abundance in dementia with Lewy bodies. MCI tissue showed variability across regions but similar to DLB; in brain areas with an overall significant increase in m6 A-RNAs, modified RNAs within dendritic processes were reduced. Using mass spectrometry proteomic datasets to corroborate our findings, we found significant changes in YTHDF3 and m6 A anti-reader protein abundance in Alzheimer's disease (AD) and asymptomatic AD/MCI tissue and correlation with cognitive resilience. CONCLUSIONS: These results provide evidence for disrupted m6 A regulation in Lewy body diseases and a plausible mechanism through which RNA processing could contribute to the formation of Lewy bodies and other dementia-associated pathological aggregates. The findings suggest that manipulation of epitranscriptomic processes influencing translational control may lead to new therapeutic approaches for neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Parkinson Disease , Humans , Lewy Body Disease/pathology , Parkinson Disease/pathology , Methylation , Lewy Bodies/pathology , Proteomics , Alzheimer Disease/pathology , Brain/pathology , RNA/metabolism , RNA, Messenger/metabolism
3.
Front Endocrinol (Lausanne) ; 13: 1006101, 2022.
Article in English | MEDLINE | ID: mdl-36263323

ABSTRACT

Androgen deprivation therapies (ADTs) are important treatments which inhibit androgen-induced prostate cancer (PCa) progression by either preventing androgen biosynthesis (e.g. abiraterone) or by antagonizing androgen receptor (AR) function (e.g. bicalutamide, enzalutamide, darolutamide). A major limitation of current ADTs is they often remain effective for limited durations after which patients commonly progress to a lethal and incurable form of PCa, called castration-resistant prostate cancer (CRPC) where the AR continues to orchestrate pro-oncogenic signalling. Indeed, the increasing numbers of ADT-related treatment-emergent neuroendocrine-like prostate cancers (NePC), which lack AR and are thus insensitive to ADT, represents a major therapeutic challenge. There is therefore an urgent need to better understand the mechanisms of AR action in hormone dependent disease and the progression to CRPC, to enable the development of new approaches to prevent, reverse or delay ADT-resistance. Interestingly the AR regulates distinct transcriptional networks in hormone dependent and CRPC, and this appears to be related to the aberrant function of key AR-epigenetic coregulator enzymes including the lysine demethylase 1 (LSD1/KDM1A). In this review we summarize the current best status of anti-androgen clinical trials, the potential for novel combination therapies and we explore recent advances in the development of novel epigenetic targeted therapies that may be relevant to prevent or reverse disease progression in patients with advanced CRPC.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Androgen Antagonists/therapeutic use , Lysine , Androgens/therapeutic use , Histone Demethylases
4.
Cancers (Basel) ; 14(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36291932

ABSTRACT

Prostate cancer (PCa) is a leading cause of cancer-related deaths and is driven by aberrant androgen receptor (AR) signalling. For this reason, androgen deprivation therapies (ADTs) that suppress androgen-induced PCa progression either by preventing androgen biosynthesis or via AR signalling inhibition (ARSi) are common treatments. The N6-methyladenosine (m6A) RNA modification is involved in regulating mRNA expression, translation, and alternative splicing, and through these mechanisms has been implicated in cancer development and progression. RNA-m6A is dynamically regulated by the METTL3 RNA methyltransferase complex and the FTO and ALKBH5 demethylases. While there is evidence supporting a role for aberrant METTL3 in many cancer types, including localised PCa, the wider contribution of METTL3, and by inference m6A, in androgen signalling in PCa remains poorly understood. Therefore, the aim of this study was to investigate the expression of METTL3 in PCa patients and study the clinical and functional relevance of METTL3 in PCa. It was found that METTL3 is aberrantly expressed in PCa patient samples and that siRNA-mediated METTL3 knockdown or METTL3-pharmacological inhibition significantly alters the basal and androgen-regulated transcriptome in PCa, which supports targeting m6A as a novel approach to modulate androgen signalling in PCa.

5.
Nat Commun ; 13(1): 1209, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260552

ABSTRACT

Cap-adjacent nucleotides of animal, protist and viral mRNAs can be O-methylated at the 2' position of the ribose (cOMe). The functions of cOMe in animals, however, remain largely unknown. Here we show that the two cap methyltransferases (CMTr1 and CMTr2) of Drosophila can methylate the ribose of the first nucleotide in mRNA. Double-mutant flies lack cOMe but are viable. Consistent with prominent neuronal expression, they have a reward learning defect that can be rescued by conditional expression in mushroom body neurons before training. Among CMTr targets are cell adhesion and signaling molecules. Many are relevant for learning, and are also targets of Fragile X Mental Retardation Protein (FMRP). Like FMRP, cOMe is required for localization of untranslated mRNAs to synapses and enhances binding of the cap binding complex in the nucleus. Hence, our study reveals a mechanism to co-transcriptionally prime mRNAs by cOMe for localized protein synthesis at synapses.


Subject(s)
Fragile X Syndrome , Methyltransferases , Animals , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reward , Ribose/metabolism , Synapses/metabolism
6.
Nat Commun ; 13(1): 1127, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35236848

ABSTRACT

The methyltransferase complex (m6A writer), which catalyzes the deposition of N6-methyladenosine (m6A) in mRNAs, is highly conserved across most eukaryotic organisms, but its components and interactions between them are still far from fully understood. Here, using in vivo interaction proteomics, two HAKAI-interacting zinc finger proteins, HIZ1 and HIZ2, are discovered as components of the Arabidopsis m6A writer complex. HAKAI is required for the interaction between HIZ1 and MTA (mRNA adenosine methylase A). Whilst HIZ1 knockout plants have normal levels of m6A, plants in which it is overexpressed show reduced methylation and decreased lateral root formation. Mutant plants lacking HIZ2 are viable but have an 85% reduction in m6A abundance and show severe developmental defects. Our findings suggest that HIZ2 is likely the plant equivalent of ZC3H13 (Flacc) of the metazoan m6A-METTL Associated Complex.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Animals , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Methylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Writing , Zinc Fingers
7.
Front Genet ; 13: 1096071, 2022.
Article in English | MEDLINE | ID: mdl-36733939

ABSTRACT

N6-methyladenosine (m6A) is the most abundant internal mRNA modification and is dynamically regulated through distinct protein complexes that methylate, demethylate, and/or interpret the m6A modification. These proteins, and the m6A modification, are involved in the regulation of gene expression, RNA stability, splicing and translation. Given its role in these crucial processes, m6A has been implicated in many diseases, including in cancer development and progression. Prostate cancer (PCa) is the most commonly diagnosed non-cutaneous cancer in men and recent studies support a role for m6A in PCa. Despite this, the literature currently lacks an integrated analysis of the expression of key components of the m6A RNA methyltransferase complex, both in PCa patients and in well-established cell line models. For this reason, this study used immunohistochemistry and functional studies to investigate the mechanistic and clinical significance of the METTL3, METTL14, WTAP and CBLL1 components of the m6A methyltransferase complex in PCa specimens and cell lines. Expression of METTL3 and CBLL1, but not METTL14 and WTAP, was associated with poorer PCa patient outcomes. Expression of METTL3, METTL14, WTAP and CBLL1 was higher in PCa cells compared with non-malignant prostate cells, with the highest expression seen in castrate-sensitive, androgen-responsive PCa cells. Moreover, in PCa cell lines, expression of METTL3 and WTAP was found to be androgen-regulated. To investigate the mechanistic role(s) of the m6A methyltransferase complex in PCa cells, short hairpin RNA (shRNA)-mediated knockdown coupled with next generation sequencing was used to determine the transcriptome-wide roles of METTL3, the catalytic subunit of the m6A methyltransferase complex. Functional depletion of METTL3 resulted in upregulation of the androgen receptor (AR), together with 134 AR-regulated genes. METTL3 knockdown also resulted in altered splicing, and enrichment of cell cycle, DNA repair and metabolic pathways. Collectively, this study identified the functional and clinical significance of four essential m6A complex components in PCa patient specimens and cell lines for the first time. Further studies are now warranted to determine the potential therapeutic relevance of METTL3 inhibitors in development to treat leukaemia to benefit patients with PCa.

8.
Mol Psychiatry ; 26(12): 7141-7153, 2021 12.
Article in English | MEDLINE | ID: mdl-34663904

ABSTRACT

Synaptic plasticity processes, which underlie learning and memory formation, require RNA to be translated local to synapses. The synaptic tagging hypothesis has previously been proposed to explain how mRNAs are available at specific activated synapses. However how RNA is regulated, and which transcripts are silenced or processed as part of the tagging process is still unknown. Modification of RNA by N6-methyladenosine (m6A/m) influences the cellular fate of mRNA. Here, by advanced microscopy, we showed that m6A demethylation by the eraser protein ALKBH5 occurs at active synaptic ribosomes and at synapses during short term plasticity. We demonstrated that at activated glutamatergic post-synaptic sites, both the YTHDF1 and YTHDF3 reader and the ALKBH5 eraser proteins increase in co-localisation to m6A-modified RNAs; but only the readers showed high co-localisation to modified RNAs during late-stage plasticity. The YTHDF1 and YTHFDF3 readers also exhibited differential roles during synaptic maturation suggesting that temporal and subcellular abundance may determine specific function. m6A-sequencing of human parahippocampus brain tissue revealed distinct white and grey matter m6A methylome profiles indicating that cellular context is a fundamental factor dictating regulated pathways. However, in both neuronal and glial cell-rich tissue, m6A effector proteins are themselves modified and m6A epitranscriptional and posttranslational modification processes coregulate protein cascades. We hypothesise that the availability m6A effector protein machinery in conjunction with RNA modification, may be important in the formation of condensed synaptic nanodomain assemblies through liquid-liquid phase separation. Our findings support that m6A demethylation by ALKBH5 is an intrinsic component of the synaptic tagging hypothesis and a molecular switch which leads to alterations in the RNA methylome, synaptic dysfunction and potentially reversible disease states.


Subject(s)
Epigenome , Synapses , AlkB Homolog 5, RNA Demethylase/genetics , AlkB Homolog 5, RNA Demethylase/metabolism , Brain/metabolism , Demethylation , Humans , Neuronal Plasticity/physiology , Synapses/metabolism
9.
Proc Natl Acad Sci U S A ; 117(35): 21785-21795, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32817553

ABSTRACT

In Arabidopsis thaliana, the METTL3 homolog, mRNA adenosine methylase (MTA) introduces N6-methyladenosine (m6A) into various coding and noncoding RNAs of the plant transcriptome. Here, we show that an MTA-deficient mutant (mta) has decreased levels of microRNAs (miRNAs) but accumulates primary miRNA transcripts (pri-miRNAs). Moreover, pri-miRNAs are methylated by MTA, and RNA structure probing analysis reveals a decrease in secondary structure within stem-loop regions of these transcripts in mta mutant plants. We demonstrate interaction between MTA and both RNA Polymerase II and TOUGH (TGH), a plant protein needed for early steps of miRNA biogenesis. Both MTA and TGH are necessary for efficient colocalization of the Microprocessor components Dicer-like 1 (DCL1) and Hyponastic Leaves 1 (HYL1) with RNA Polymerase II. We propose that secondary structure of miRNA precursors induced by their MTA-dependent m6A methylation status, together with direct interactions between MTA and TGH, influence the recruitment of Microprocessor to plant pri-miRNAs. Therefore, the lack of MTA in mta mutant plants disturbs pri-miRNA processing and leads to the decrease in miRNA accumulation. Furthermore, our findings reveal that reduced miR393b levels likely contributes to the impaired auxin response phenotypes of mta mutant plants.


Subject(s)
Methyltransferases/metabolism , MicroRNAs/biosynthesis , MicroRNAs/metabolism , Adenosine/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cell Cycle Proteins/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Methylation , Methyltransferases/physiology , MicroRNAs/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism
11.
Plant Physiol ; 179(2): 544-557, 2019 02.
Article in English | MEDLINE | ID: mdl-30459263

ABSTRACT

Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shelf life is a key quality trait related to alterations in cuticle properties and remodeling of the fruit cell walls. Studies with transgenic tomato plants undertaken over the last 20 years have indicated that a range of pectin-degrading enzymes are involved in cell wall remodeling. These studies usually involved silencing of only a single gene and it has proved difficult to compare the effects of silencing these genes across the different experimental systems. Here we report the generation of CRISPR-based mutants in the ripening-related genes encoding the pectin-degrading enzymes pectate lyase (PL), polygalacturonase 2a (PG2a), and ß-galactanase (TBG4). Comparison of the physiochemical properties of the fruits from a range of PL, PG2a, and TBG4 CRISPR lines demonstrated that only mutations in PL resulted in firmer fruits, although mutations in PG2a and TBG4 influenced fruit color and weight. Pectin localization, distribution, and solubility in the pericarp cells of the CRISPR mutant fruits were investigated using the monoclonal antibody probes LM19 to deesterified homogalacturonan, INRA-RU1 to rhamnogalacturonan I, LM5 to ß-1,4-galactan, and LM6 to arabinan epitopes, respectively. The data indicate that PL, PG2a, and TBG4 act on separate cell wall domains and the importance of cellulose microfibril-associated pectin is reflected in its increased occurrence in the different mutant lines.


Subject(s)
CRISPR-Cas Systems , Enzymes/genetics , Fruit/physiology , Pectins/metabolism , Solanum lycopersicum/physiology , Cell Wall/chemistry , Cell Wall/metabolism , Enzymes/metabolism , Esterification , Galactans/genetics , Galactans/metabolism , Gene Expression Regulation, Plant , Gene Silencing , Solanum lycopersicum/genetics , Mutation , Pectins/genetics , Pectins/immunology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified
12.
Cell Rep ; 25(5): 1146-1157.e3, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30380407

ABSTRACT

N6-methyladenosine (m6A) is a dynamic, reversible, covalently modified ribonucleotide that occurs predominantly toward 3' ends of eukaryotic mRNAs and is essential for their proper function and regulation. In Arabidopsis thaliana, many RNAs contain at least one m6A site, yet the transcriptome-wide function of m6A remains mostly unknown. Here, we show that many m6A-modified mRNAs in Arabidopsis have reduced abundance in the absence of this mark. The decrease in abundance is due to transcript destabilization caused by cleavage occurring 4 or 5 nt directly upstream of unmodified m6A sites. Importantly, we also find that, upon agriculturally relevant salt treatment, m6A is dynamically deposited on and stabilizes transcripts encoding proteins required for salt and osmotic stress response. Overall, our findings reveal that m6A generally acts as a stabilizing mark through inhibition of site-specific cleavage in plant transcriptomes, and this mechanism is required for proper regulation of the salt-stress-responsive transcriptome.


Subject(s)
Adenosine/analogs & derivatives , Arabidopsis/genetics , RNA Stability/genetics , Ribonucleotides/metabolism , Adenosine/metabolism , Arabidopsis/drug effects , Arabidopsis/growth & development , Base Sequence , Conserved Sequence/genetics , Exoribonucleases/metabolism , Methylation/drug effects , Open Reading Frames/genetics , Plant Proteins/metabolism , RNA Stability/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sodium Chloride/pharmacology , Stress, Physiological/drug effects , Transcriptome/genetics
13.
Mol Plant Pathol ; 19(1): 104-115, 2018 01.
Article in English | MEDLINE | ID: mdl-27756102

ABSTRACT

In order to cope with pathogens, plants have evolved sophisticated mechanisms to sense pathogenic attacks and to induce defence responses. The N-acyl-homoserine lactone (AHL)-mediated quorum sensing in bacteria regulates diverse physiological processes, including those involved in pathogenicity. In this work, we study the interactions between AHL-producing transgenic tobacco plants and Pseudomonas syringae pv. tabaci 11528 (P. syringae 11528). Both a reduced incidence of disease and decrease in the growth of P. syringae 11528 were observed in AHL-producing plants compared with wild-type plants. The present data indicate that plant-produced AHLs enhance disease resistance against this pathogen. Subsequent RNA-sequencing analysis showed that the exogenous addition of AHLs up-regulated the expression of P. syringae 11528 genes for flagella production. Expression levels of plant defence genes in AHL-producing and wild-type plants were determined by quantitative real-time polymerase chain reaction. These data showed that plant-produced AHLs activated a wide spectrum of defence responses in plants following inoculation, including the oxidative burst, hypersensitive response, cell wall strengthening, and the production of certain metabolites. These results demonstrate that exogenous AHLs alter the gene expression patterns of pathogens, and plant-produced AHLs either directly or indirectly enhance plant local immunity during the early stage of plant infection.


Subject(s)
Acyl-Butyrolactones/pharmacology , Flagella/metabolism , Nicotiana/immunology , Nicotiana/microbiology , Pseudomonas syringae/metabolism , Cell Count , Disease Resistance/drug effects , Disease Resistance/immunology , Flagella/drug effects , Gene Expression Profiling , Gene Expression Regulation, Bacterial/drug effects , Green Fluorescent Proteins/metabolism , Plant Diseases/microbiology , Plant Leaves/drug effects , Plant Leaves/microbiology , Pseudomonas syringae/drug effects , Pseudomonas syringae/genetics , Pseudomonas syringae/growth & development , Up-Regulation/drug effects , Up-Regulation/genetics
14.
New Phytol ; 215(1): 157-172, 2017 07.
Article in English | MEDLINE | ID: mdl-28503769

ABSTRACT

N6-adenosine methylation (m6 A) of mRNA is an essential process in most eukaryotes, but its role and the status of factors accompanying this modification are still poorly understood. Using combined methods of genetics, proteomics and RNA biochemistry, we identified a core set of mRNA m6 A writer proteins in Arabidopsis thaliana. The components required for m6 A in Arabidopsis included MTA, MTB, FIP37, VIRILIZER and the E3 ubiquitin ligase HAKAI. Downregulation of these proteins led to reduced relative m6 A levels and shared pleiotropic phenotypes, which included aberrant vascular formation in the root, indicating that correct m6 A methylation plays a role in developmental decisions during pattern formation. The conservation of these proteins amongst eukaryotes and the demonstration of a role in writing m6 A for the E3 ubiquitin ligase HAKAI is likely to be of considerable relevance beyond the plant sciences.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/metabolism , Methyltransferases/physiology , RNA, Messenger/metabolism , Ubiquitin-Protein Ligases/physiology , Adenosine/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Conserved Sequence , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Plants, Genetically Modified/metabolism , Sequence Alignment , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
15.
Methods Mol Biol ; 1562: 79-87, 2017.
Article in English | MEDLINE | ID: mdl-28349455

ABSTRACT

The base-modified nucleotide, N 6-methyladenosine, is a relatively abundant modification found in the mRNA of most higher eukaryotes. Methylation levels can change dependent upon environmental conditions, cell differentiation state, or following knockdown of members of the methylase complex, and it is often useful to directly measure and compare N 6-methyladenosine levels between samples. Two dimensional chromatography of radiolabeled nucleotides, following specific nuclease treatments, provides a robust, sensitive, and reproducible assay for this modification.


Subject(s)
Adenosine/analogs & derivatives , Chromatography, Thin Layer , RNA, Messenger/genetics , Chromatography, Thin Layer/methods , Epigenesis, Genetic , Hydrolysis , Isotope Labeling , Methylation , RNA, Messenger/chemistry , Single-Strand Specific DNA and RNA Endonucleases , Transcriptome
16.
Placenta ; 56: 79-85, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28238455

ABSTRACT

The placenta and tumors share important characteristics, including a requirement to establish effective angiogenesis. In the case of the placenta, optimal angiogenesis is required to sustain the blood flow required to maintain a successful pregnancy, whereas in tumors establishing new blood supplies is considered a key step in supporting metastases. Therefore the development of novel angiogenesis inhibitors has been an area of active research in oncology. A subset of the molecular processes regulating angiogenesis are well understood in the context of both early placentation and tumorigenesis. In this review we focus on the well-established role of androgen regulation of angiogenesis in cancer and relate these mechanisms to placental angiogenesis. The physiological actions of androgens are mediated by the androgen receptor (AR), a ligand dependent transcription factor. Androgens and the AR are essential for normal male embryonic development, puberty and lifelong health. Defects in androgen signalling are associated with a diverse range of clinical disorders in men and women including disorders of sex development (DSD), polycystic ovary syndrome in women and many cancers. We summarize the diverse molecular mechanisms of androgen regulation of angiogenesis and infer the potential significance of these pathways to normal and pathogenic placental function. Finally, we offer potential research applications of androgen-targeting molecules developed to treat cancer as investigative tools to help further delineate the role of androgen signalling in placental function and maternal and offspring health in animal models.


Subject(s)
Androgens/metabolism , Neoplasms/metabolism , Neovascularization, Pathologic/metabolism , Neovascularization, Physiologic/physiology , Placentation/physiology , Animals , Female , Humans , Neoplasms/pathology , Neovascularization, Pathologic/pathology , Pregnancy
17.
Plant Cell Rep ; 36(1): 81-87, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27662835

ABSTRACT

KEY MESSAGE: This study highlights the changes in umami-related nucleotide and glutamate levels when the AMP deaminase gene was elevated in transgenic tomato. Taste is perceived as one of a combination of five sensations, sweet, sour, bitter, salty, and umami. The umami taste is best known as a savoury sensation and plays a central role in food flavour, palatability, and eating satisfaction. Umami flavour can be imparted by the presence of glutamate and is greatly enhanced by the addition of ribonucleotides, such as inosine monophosphate (IMP) and guanosine monophosphate (GMP). The production of IMP is regulated by the enzyme adenosine monophosphate (AMP) deaminase which functions to convert AMP into IMP. We have generated transgenic tomato (Solanum lycopersicum) lines over expressing AMP deaminase under the control of a fruit-specific promoter. The transgenic lines showed substantially enhanced levels of AMP deaminase expression in comparison to the wild-type control. Elevated AMP deaminase levels resulted in the reduced accumulation of glutamate and increased levels of the umami nucleotide GMP. AMP concentrations were unchanged. The effects on the levels of glutamate and GMP were unexpected and are discussed in relation to the metabolite flux within this pathway.


Subject(s)
AMP Deaminase/metabolism , Metabolome , Solanum lycopersicum/enzymology , Taste , Adenosine Monophosphate/metabolism , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Glutamic Acid/metabolism , Guanosine Monophosphate/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Metabolome/genetics , Plant Proteins , Plants, Genetically Modified , Real-Time Polymerase Chain Reaction , Transgenes
18.
Nature ; 540(7632): 301-304, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27919081

ABSTRACT

N6-methyladenosine (m6A) is the most common internal modification of eukaryotic messenger RNA (mRNA) and is decoded by YTH domain proteins. The mammalian mRNA m6A methylosome is a complex of nuclear proteins that includes METTL3 (methyltransferase-like 3), METTL14, WTAP (Wilms tumour 1-associated protein) and KIAA1429. Drosophila has corresponding homologues named Ime4 and KAR4 (Inducer of meiosis 4 and Karyogamy protein 4), and Female-lethal (2)d (Fl(2)d) and Virilizer (Vir). In Drosophila, fl(2)d and vir are required for sex-dependent regulation of alternative splicing of the sex determination factor Sex lethal (Sxl). However, the functions of m6A in introns in the regulation of alternative splicing remain uncertain. Here we show that m6A is absent in the mRNA of Drosophila lacking Ime4. In contrast to mouse and plant knockout models, Drosophila Ime4-null mutants remain viable, though flightless, and show a sex bias towards maleness. This is because m6A is required for female-specific alternative splicing of Sxl, which determines female physiognomy, but also translationally represses male-specific lethal 2 (msl-2) to prevent dosage compensation in females. We further show that the m6A reader protein YT521-B decodes m6A in the sex-specifically spliced intron of Sxl, as its absence phenocopies Ime4 mutants. Loss of m6A also affects alternative splicing of additional genes, predominantly in the 5' untranslated region, and has global effects on the expression of metabolic genes. The requirement of m6A and its reader YT521-B for female-specific Sxl alternative splicing reveals that this hitherto enigmatic mRNA modification constitutes an ancient and specific mechanism to adjust levels of gene expression.


Subject(s)
Adenosine/analogs & derivatives , Alternative Splicing , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , RNA Precursors/metabolism , RNA-Binding Proteins/genetics , Sex Characteristics , Sex Determination Processes/genetics , 5' Untranslated Regions/genetics , Adenosine/metabolism , Animals , DNA-Binding Proteins/biosynthesis , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Dosage Compensation, Genetic , Drosophila Proteins/biosynthesis , Drosophila Proteins/deficiency , Drosophila Proteins/metabolism , Female , Introns/genetics , Male , Methyltransferases/deficiency , Methyltransferases/genetics , Methyltransferases/metabolism , Neurons/metabolism , Nuclear Proteins/biosynthesis , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA Precursors/chemistry , RNA Precursors/genetics , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/biosynthesis , Transcription Factors/deficiency , Transcription Factors/genetics , Transcription, Genetic
20.
Nat Biotechnol ; 34(9): 950-2, 2016 09.
Article in English | MEDLINE | ID: mdl-27454737

ABSTRACT

Controlling the rate of softening to extend shelf life was a key target for researchers engineering genetically modified (GM) tomatoes in the 1990s, but only modest improvements were achieved. Hybrids grown nowadays contain 'non-ripening mutations' that slow ripening and improve shelf life, but adversely affect flavor and color. We report substantial, targeted control of tomato softening, without affecting other aspects of ripening, by silencing a gene encoding a pectate lyase.


Subject(s)
Fruit/physiology , Gene Silencing/physiology , Genetic Enhancement/methods , Plants, Genetically Modified/genetics , Polysaccharide-Lyases/genetics , Solanum lycopersicum/genetics , Gene Targeting/methods , Solanum lycopersicum/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...