Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 29(14): 21280-21289, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34265918

ABSTRACT

Microdisks fabricated with III-nitride materials grown on GaN substrates are demonstrated, taking advantage of the high material quality of homoepitaxial films and advanced micro-fabrication processes. The epitaxial structure consists of InGaN/GaN multi-quantum wells (MQWs) sandwiched between AlGaN/GaN and InAlN/GaN superlattices as cladding layers for optical confinement. Due to lattice-matched growth with low dislocations, an internal quantum efficiency of ∼40% is attained, while the sidewalls of the etched 8 µm-diameter microdisks patterned by microsphere lithography are optically smooth to promote the formation of whispering-gallery modes (WGMs) within the circular optical cavities. Optically pumped lasing with low threshold of ∼5.2 mJ/cm2 and quality (Q) factor of ∼3000 at the dominant lasing wavelength of 436.8 nm has been observed. The microdisks also support electroluminescent operation, demonstrating WGMs consistent with the photoluminescence spectra and with finite-difference time-domain (FDTD) simulations.

2.
Opt Express ; 27(8): 11800-11808, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-31053020

ABSTRACT

Nanophotonic circuits using group III-nitrides on silicon are still lacking one key component: efficient electrical injection. In this paper we demonstrate an electrical injection scheme using a metal microbridge contact in thin III-nitride on silicon mushroom-type microrings that is compatible with integrated nanophotonic circuits with the goal of achieving electrically injected lasing. Using a central buried n-contact to bypass the insulating buffer layers, we are able to underetch the microring, which is essential for maintaining vertical confinement in a thin disk. We demonstrate direct current room-temperature electroluminescence with 440 mW/cm2 output power density at 20 mA from such microrings with diameters of 30 to 50 µm. The first steps towards achieving an integrated photonic circuit are demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...