Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37947682

ABSTRACT

In this paper, we present the preparation of few-layer MoS2 films on single-crystal sapphire, as well as on heteroepitaxial GaN templates on sapphire substrates, using the pulsed laser deposition (PLD) technique. Detailed structural and chemical characterization of the films were performed using Raman spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction measurements, and high-resolution transmission electron microscopy. According to X-ray diffraction studies, the films exhibit epitaxial growth, indicating a good in-plane alignment. Furthermore, the films demonstrate uniform thickness on large areas, as confirmed by Raman spectroscopy. The lateral electrical current transport of the MoS2 grown on sapphire was investigated by temperature (T)-dependent sheet resistance and Hall effect measurements, showing a high n-type doping of the semiconducting films (ns from ~1 × 1013 to ~3.4 × 1013 cm-2 from T = 300 K to 500 K), with a donor ionization energy of Ei = 93 ± 8 meV and a mobility decreasing with T. Finally, the vertical current injection across the MoS2/GaN heterojunction was investigated by means of conductive atomic force microscopy, showing the rectifying behavior of the I-V characteristics with a Schottky barrier height of ϕB ≈ 0.36 eV. The obtained results pave the way for the scalable application of PLD-grown MoS2 on GaN in electronics/optoelectronics.

2.
Opt Lett ; 47(6): 1521-1524, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35290354

ABSTRACT

Optically pumped whispering-gallery mode (WGM) lasing is observed from a thin-film GaN microdisk processed from GaN-on-Si InGaN/GaN multi-quantum well wafers by selective wet-etch removal of the substrate. Compared with thin-film microdisks processed from GaN-on-sapphire wafers through laser lift-off of the sapphire substrate, the exposed surface is significantly smoother as laser-induced damage is avoided, with a root-mean-square roughness of 1.3 nm compared with 5.8 nm of the latter wafer. The ∼8-µm diameter microdisks, fabricated by pattern transfer from a silica microsphere and dry etching, benefit from the surface smoothness to offer superior optical confinement within the cavity. WGM lasing thresholds of ∼2.9 mJ/cm2 and ∼3.5 mJ/cm2 with quality (Q)-factors of ∼3100 and ∼1700 are observed at the peak lasing wavelengths of ∼453 nm and ∼532 nm, respectively, which are significantly better than thin-film microdisks processed from GaN-on-sapphire wafers despite lower internal quantum efficiency, highlighting the importance of surface smoothness in such optical cavities.

3.
Sci Rep ; 10(1): 18919, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33144622

ABSTRACT

It is shown that substrate pixelisation before epitaxial growth can significantly impact the emission color of semiconductor heterostructures. The wavelength emission from InxGa1-xN/GaN quantum wells can be shifted from blue to yellow simply by reducing the mesa size from 90 × 90 µm2 to 10 × 10 µm2 of the patterned silicon used as the substrate. This color shift is mainly attributed to an increase of the quantum well thickness when the mesa size decreases. The color is also affected, in a lesser extent, by the trench width between the mesas. Cathodoluminescence hyperspectral imaging is used to map the wavelength emission of the InxGa1-xN/GaN quantum wells. Whatever the mesa size is, the wavelength emission is red-shifted at the mesa edges due to a larger quantum well thickness and In composition.

4.
Sci Rep ; 10(1): 14166, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32843709

ABSTRACT

AlN nucleation layers are the basement of GaN-on-Si structures grown for light-emitting diodes, high frequency telecommunication and power switching systems. In this context, our work aims to understand the origin of propagation losses in GaN-on-Si High Electron Mobility Transistors at microwaves frequencies, which are critical for efficient devices and circuits. AlN/Si structures are grown by Metalorganic Vapor Phase Epitaxy. Acceptor dopant in-diffusion (Al and Ga) into the Si substrate is studied by Secondary Ion Mass Spectroscopy and is mainly located in the first 200 nm beneath the interface. In this region, an acceptor concentration of a few 1018 cm-3 is estimated from Capacitance-Voltage (C-V) measurements while the volume hole concentration of several 1017 cm-3 is deduced from sheet resistance. Furthermore, the combination of scanning capacitance microscopy and scanning spreading resistance microscopy enables the 2D profiling of both the p-type conductive channel and the space charge region beneath the AlN/Si interface. We demonstrate that samples grown at lower temperature exhibit a p-doped conductive channel over a shallower depth which explains lower propagation losses in comparison with those synthesized at higher temperature. Our work highlights that this p-type channel can increase the propagation losses in the high-frequency devices but also that a memory effect associated with the previous sample growths with GaN can noticeably affect the physical properties in absence of proper reactor preparation. Hence, monitoring the acceptor dopant in-diffusion beneath the AlN/Si interface is crucial for achieving efficient GaN-on-Si microwave power devices.

5.
Opt Lett ; 45(15): 4276-4279, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32735272

ABSTRACT

Ultraviolet microdisk lasers are integrated monolithically into photonic circuits using a III-nitride-on-silicon platform with gallium nitride (GaN) as the main waveguide layer. The photonic circuits consist of a microdisk and a pulley waveguide, terminated by out-coupling gratings. In this Letter, we measure quality factors up to 3500 under continuous-wave excitation. Lasing is observed from 374 to 399 nm under pulsed excitation, achieving low-threshold energies of 0.14mJ/cm2 per pulse (threshold peak powers of 35kW/cm2). A large peak-to-background dynamic of around 200 is observed at the out-coupling grating for small gaps of 50 nm between the disk and the waveguide. These devices operate at the limit of what can be achieved with GaN in terms of operation wavelength.

6.
Sci Rep ; 9(1): 18095, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31792272

ABSTRACT

On-chip microlaser sources in the blue constitute an important building block for complex integrated photonic circuits on silicon. We have developed photonic circuits operating in the blue spectral range based on microdisks and bus waveguides in III-nitride on silicon. We report on the interplay between microdisk-waveguide coupling and its optical properties. We observe critical coupling and phase matching, i.e. the most efficient energy transfer scheme, for very short gap sizes and thin waveguides (g = 45 nm and w = 170 nm) in the spontaneous emission regime. Whispering gallery mode lasing is demonstrated for a wide range of parameters with a strong dependence of the threshold on the loaded quality factor. We show the dependence and high sensitivity of the output signal on the coupling. Lastly, we observe the impact of processing on the tuning of mode resonances due to the very short coupling distances. Such small footprint on-chip integrated microlasers providing maximum energy transfer into a photonic circuit have important potential applications for visible-light communication and lab-on-chip bio-sensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...