Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 71: 67-76, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26894596

ABSTRACT

Morphological changes in the retinal vascular network are associated with future risk of many systemic and vascular diseases. However, uncertainty over the presence and nature of some of these associations exists. Analysis of data from large population based studies will help to resolve these uncertainties. The QUARTZ (QUantitative Analysis of Retinal vessel Topology and siZe) retinal image analysis system allows automated processing of large numbers of retinal images. However, an image quality assessment module is needed to achieve full automation. In this paper, we propose such an algorithm, which uses the segmented vessel map to determine the suitability of retinal images for use in the creation of vessel morphometric data suitable for epidemiological studies. This includes an effective 3-dimensional feature set and support vector machine classification. A random subset of 800 retinal images from UK Biobank (a large prospective study of 500,000 middle aged adults; where 68,151 underwent retinal imaging) was used to examine the performance of the image quality algorithm. The algorithm achieved a sensitivity of 95.33% and a specificity of 91.13% for the detection of inadequate images. The strong performance of this image quality algorithm will make rapid automated analysis of vascular morphometry feasible on the entire UK Biobank dataset (and other large retinal datasets), with minimal operator involvement, and at low cost.


Subject(s)
Algorithms , Image Enhancement/methods , Retina/pathology , Retinal Vessels/pathology , Vascular Diseases/pathology , Adult , Aged , Datasets as Topic , Female , Humans , Male , Middle Aged , Random Allocation , United Kingdom
2.
Comput Med Imaging Graph ; 43: 64-77, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25841182

ABSTRACT

Proliferative diabetic retinopathy (PDR) is a condition that carries a high risk of severe visual impairment. The hallmark of PDR is the growth of abnormal new vessels. In this paper, an automated method for the detection of new vessels from retinal images is presented. This method is based on a dual classification approach. Two vessel segmentation approaches are applied to create two separate binary vessel map which each hold vital information. Local morphology features are measured from each binary vessel map to produce two separate 4-D feature vectors. Independent classification is performed for each feature vector using a support vector machine (SVM) classifier. The system then combines these individual outcomes to produce a final decision. This is followed by the creation of additional features to generate 21-D feature vectors, which feed into a genetic algorithm based feature selection approach with the objective of finding feature subsets that improve the performance of the classification. Sensitivity and specificity results using a dataset of 60 images are 0.9138 and 0.9600, respectively, on a per patch basis and 1.000 and 0.975, respectively, on a per image basis.


Subject(s)
Algorithms , Diabetic Retinopathy/diagnosis , Diagnosis, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Diabetic Retinopathy/genetics , Humans , Sensitivity and Specificity , Support Vector Machine
3.
Article in English | MEDLINE | ID: mdl-26737473

ABSTRACT

The characteristics of the retinal vascular network have been prospectively associated with many systemic and vascular diseases. QUARTZ is a fully automated software that has been developed to localize and quantify the morphological characteristics of blood vessels in retinal images for use in epidemiological studies. This software was used to analyse a dataset containing 16,000 retinal images from the EPIC-Norfolk cohort study. The objective of this paper is to both assess the suitability of this dataset for computational analysis and to further evaluate the QUARTZ software.


Subject(s)
Databases, Factual , Image Processing, Computer-Assisted/methods , Retinal Vessels/anatomy & histology , Software , Humans
4.
Comput Med Imaging Graph ; 37(1): 48-60, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23410507

ABSTRACT

Changes and variation in retinal vessel width are related to vascular risk factors and prospectively related to cardiovascular disease in later life. Hence, assessment of vessel width may be a useful physio-marker and potential predictor of cardiovascular status. However, measurement of vessel calibre from retinal images is a challenging process to automate. This paper proposes an automated system to measure vessel calibre in retinal images, which is demonstrated in images of multi-ethnic school children. The diameter measurement is based on the detection of the centreline pixels from a vessel probability map image, determining the vessel orientation at these pixels, extracting the vessel segments and later using a two-dimensional model, which is optimized to fit various types of intensity profiles of vessel segments. The width is then estimated from parameters of the optimized model. The method is also quantitatively analyzed using monochromatic representations of different colour spaces. The algorithm is evaluated on a recently introduced public database CHASE_DB1, which is a subset of retinal images of multi-ethnic children from the Child Heart and Health Study in England (CHASE) dataset. Moreover, the precise estimation of retinal vascular widths is critical for epidemiologists to identify the risk factors. This work also introduces an interactive software tool for epidemiologists, with which retinal vessel calibre can be precisely marked.


Subject(s)
Ethnicity , Ophthalmoscopy/methods , Pattern Recognition, Automated/methods , Retinal Vessels/anatomy & histology , Algorithms , Child , England , Female , Humans , Male , Predictive Value of Tests , Risk Factors , Software , Surveys and Questionnaires
5.
J Digit Imaging ; 26(2): 274-86, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22832895

ABSTRACT

The appearance of the retinal blood vessels is an important diagnostic indicator of various clinical disorders of the eye and the body. Retinal blood vessels have been shown to provide evidence in terms of change in diameter, branching angles, or tortuosity, as a result of ophthalmic disease. This paper reports the development for an automated method for segmentation of blood vessels in retinal images. A unique combination of methods for retinal blood vessel skeleton detection and multidirectional morphological bit plane slicing is presented to extract the blood vessels from the color retinal images. The skeleton of main vessels is extracted by the application of directional differential operators and then evaluation of combination of derivative signs and average derivative values. Mathematical morphology has been materialized as a proficient technique for quantifying the retinal vasculature in ocular fundus images. A multidirectional top-hat operator with rotating structuring elements is used to emphasize the vessels in a particular direction, and information is extracted using bit plane slicing. An iterative region growing method is applied to integrate the main skeleton and the images resulting from bit plane slicing of vessel direction-dependent morphological filters. The approach is tested on two publicly available databases DRIVE and STARE. Average accuracy achieved by the proposed method is 0.9423 for both the databases with significant values of sensitivity and specificity also; the algorithm outperforms the second human observer in terms of precision of segmented vessel tree.


Subject(s)
Algorithms , Fluorescein Angiography/methods , Image Enhancement/methods , Models, Cardiovascular , Radiographic Image Enhancement/methods , Retinal Vessels/anatomy & histology , Automation , Humans , Retinal Artery/anatomy & histology , Retinal Vein/anatomy & histology , Sensitivity and Specificity
6.
Comput Methods Programs Biomed ; 108(1): 407-33, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22525589

ABSTRACT

Retinal vessel segmentation algorithms are a fundamental component of automatic retinal disease screening systems. This work examines the blood vessel segmentation methodologies in two dimensional retinal images acquired from a fundus camera and a survey of techniques is presented. The aim of this paper is to review, analyze and categorize the retinal vessel extraction algorithms, techniques and methodologies, giving a brief description, highlighting the key points and the performance measures. We intend to give the reader a framework for the existing research; to introduce the range of retinal vessel segmentation algorithms; to discuss the current trends and future directions and summarize the open problems. The performance of algorithms is compared and analyzed on two publicly available databases (DRIVE and STARE) of retinal images using a number of measures which include accuracy, true positive rate, false positive rate, sensitivity, specificity and area under receiver operating characteristic (ROC) curve.


Subject(s)
Blood Vessels/pathology , Algorithms , Fundus Oculi , Humans
7.
Comput Methods Programs Biomed ; 108(2): 600-16, 2012 Nov.
Article in English | MEDLINE | ID: mdl-21963241

ABSTRACT

The change in morphology, diameter, branching pattern or tortuosity of retinal blood vessels is an important indicator of various clinical disorders of the eye and the body. This paper reports an automated method for segmentation of blood vessels in retinal images. A unique combination of techniques for vessel centerlines detection and morphological bit plane slicing is presented to extract the blood vessel tree from the retinal images. The centerlines are extracted by using the first order derivative of a Gaussian filter in four orientations and then evaluation of derivative signs and average derivative values is performed. Mathematical morphology has emerged as a proficient technique for quantifying the blood vessels in the retina. The shape and orientation map of blood vessels is obtained by applying a multidirectional morphological top-hat operator with a linear structuring element followed by bit plane slicing of the vessel enhanced grayscale image. The centerlines are combined with these maps to obtain the segmented vessel tree. The methodology is tested on three publicly available databases DRIVE, STARE and MESSIDOR. The results demonstrate that the performance of the proposed algorithm is comparable with state of the art techniques in terms of accuracy, sensitivity and specificity.


Subject(s)
Retinal Vessels/anatomy & histology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...