Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 26(7)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39056930

ABSTRACT

The metrological limits of thermometry operated in nonequilibrium dynamical regimes are analyzed. We consider a finite-dimensional quantum system, employed as a quantum thermometer, in contact with a thermal bath inducing Markovian thermalization dynamics. The quantum thermometer is initialized in a generic quantum state, possibly including quantum coherence with respect to the Hamiltonian basis. We prove that the precision of the thermometer, quantified by the Quantum Fisher Information, is enhanced by the quantum coherence in its initial state. We analytically show this in the specific case of qubit thermometers for which the maximization of the Quantum Fisher Information occurs at a finite time during the transient thermalization dynamics. Such a finite-time precision enhancement can be better than the precision that is achieved asymptotically.

SELECTION OF CITATIONS
SEARCH DETAIL
...