Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(1): e0167794, 2017.
Article in English | MEDLINE | ID: mdl-28107356

ABSTRACT

Previously, we have described our feeder-free, xeno-free approach to generate megakaryocytes (MKs) in culture from human induced pluripotent stem cells (iPSCs). Here, we focus specifically on the integrity of these MKs using: (1) genotype discordance between parent cell DNA to iPSC cell DNA and onward to the differentiated MK DNA; (2) genomic structural integrity using copy number variation (CNV); and (3) transcriptomic signatures of the derived MK lines compared to the iPSC lines. We detected a very low rate of genotype discordance; estimates were 0.0001%-0.01%, well below the genotyping error rate for our assay (0.37%). No CNVs were generated in the iPSCs that were subsequently passed on to the MKs. Finally, we observed highly biologically relevant gene sets as being upregulated in MKs relative to the iPSCs: platelet activation, blood coagulation, megakaryocyte development, platelet formation, platelet degranulation, and platelet aggregation. These data strongly support the integrity of the derived MK lines.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Megakaryocytes/cytology , Transcriptome , Humans , Induced Pluripotent Stem Cells/metabolism , Megakaryocytes/metabolism
2.
Nucleic Acids Res ; 45(2): e9, 2017 01 25.
Article in English | MEDLINE | ID: mdl-27694310

ABSTRACT

Differential expression analysis of RNA sequencing (RNA-seq) data typically relies on reconstructing transcripts or counting reads that overlap known gene structures. We previously introduced an intermediate statistical approach called differentially expressed region (DER) finder that seeks to identify contiguous regions of the genome showing differential expression signal at single base resolution without relying on existing annotation or potentially inaccurate transcript assembly.We present the derfinder software that improves our annotation-agnostic approach to RNA-seq analysis by: (i) implementing a computationally efficient bump-hunting approach to identify DERs that permits genome-scale analyses in a large number of samples, (ii) introducing a flexible statistical modeling framework, including multi-group and time-course analyses and (iii) introducing a new set of data visualizations for expressed region analysis. We apply this approach to public RNA-seq data from the Genotype-Tissue Expression (GTEx) project and BrainSpan project to show that derfinder permits the analysis of hundreds of samples at base resolution in R, identifies expression outside of known gene boundaries and can be used to visualize expressed regions at base-resolution. In simulations, our base resolution approaches enable discovery in the presence of incomplete annotation and is nearly as powerful as feature-level methods when the annotation is complete.derfinder analysis using expressed region-level and single base-level approaches provides a compromise between full transcript reconstruction and feature-level analysis. The package is available from Bioconductor at www.bioconductor.org/packages/derfinder.


Subject(s)
Gene Expression Profiling/methods , Software , Gene Expression Regulation , Genomics/methods , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Organ Specificity/genetics , Transcriptome , Web Browser
3.
Bioinformatics ; 31(17): 2778-84, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-25926345

ABSTRACT

MOTIVATION: Statistical methods development for differential expression analysis of RNA sequencing (RNA-seq) requires software tools to assess accuracy and error rate control. Since true differential expression status is often unknown in experimental datasets, artificially constructed datasets must be utilized, either by generating costly spike-in experiments or by simulating RNA-seq data. RESULTS: Polyester is an R package designed to simulate RNA-seq data, beginning with an experimental design and ending with collections of RNA-seq reads. Its main advantage is the ability to simulate reads indicating isoform-level differential expression across biological replicates for a variety of experimental designs. Data generated by Polyester is a reasonable approximation to real RNA-seq data and standard differential expression workflows can recover differential expression set in the simulation by the user. AVAILABILITY AND IMPLEMENTATION: Polyester is freely available from Bioconductor (http://bioconductor.org/). CONTACT: jtleek@gmail.com SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Chromosomes, Human, Pair 22/genetics , Computational Biology/methods , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, RNA/methods , Software , Algorithms , Binomial Distribution , Europe , Gene Expression Regulation , Genetics, Population , Haplotypes/genetics , Humans , Protein Isoforms , RNA/genetics
5.
Biostatistics ; 15(3): 413-26, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24398039

ABSTRACT

RNA-sequencing (RNA-seq) is a flexible technology for measuring genome-wide expression that is rapidly replacing microarrays as costs become comparable. Current differential expression analysis methods for RNA-seq data fall into two broad classes: (1) methods that quantify expression within the boundaries of genes previously published in databases and (2) methods that attempt to reconstruct full length RNA transcripts. The first class cannot discover differential expression outside of previously known genes. While the second approach does possess discovery capabilities, statistical analysis of differential expression is complicated by the ambiguity and variability incurred while assembling transcripts and estimating their abundances. Here, we propose a novel method that first identifies differentially expressed regions (DERs) of interest by assessing differential expression at each base of the genome. The method then segments the genome into regions comprised of bases showing similar differential expression signal, and then assigns a measure of statistical significance to each region. Optionally, DERs can be annotated using a reference database of genomic features. We compare our approach with leading competitors from both current classes of differential expression methods and highlight the strengths and weaknesses of each. A software implementation of our method is available on github (https://github.com/alyssafrazee/derfinder).


Subject(s)
Gene Expression Profiling/methods , Genomics/methods , Sequence Analysis, RNA/methods , Humans
6.
BMC Bioinformatics ; 12: 449, 2011 Nov 16.
Article in English | MEDLINE | ID: mdl-22087737

ABSTRACT

BACKGROUND: RNA sequencing is a flexible and powerful new approach for measuring gene, exon, or isoform expression. To maximize the utility of RNA sequencing data, new statistical methods are needed for clustering, differential expression, and other analyses. A major barrier to the development of new statistical methods is the lack of RNA sequencing datasets that can be easily obtained and analyzed in common statistical software packages such as R. To speed up the development process, we have created a resource of analysis-ready RNA-sequencing datasets. 2 DESCRIPTION: ReCount is an online resource of RNA-seq gene count tables and auxilliary data. Tables were built from raw RNA sequencing data from 18 different published studies comprising 475 samples and over 8 billion reads. Using the Myrna package, reads were aligned, overlapped with gene models and tabulated into gene-by-sample count tables that are ready for statistical analysis. Count tables and phenotype data were combined into Bioconductor ExpressionSet objects for ease of analysis. ReCount also contains the Myrna manifest files and R source code used to process the samples, allowing statistical and computational scientists to consider alternative parameter values. 3 CONCLUSIONS: By combining datasets from many studies and providing data that has already been processed from. fastq format into ready-to-use. RData and. txt files, ReCount facilitates analysis and methods development for RNA-seq count data. We anticipate that ReCount will also be useful for investigators who wish to consider cross-study comparisons and alternative normalization strategies for RNA-seq.


Subject(s)
Gene Expression Profiling/methods , RNA/analysis , Sequence Analysis, RNA/methods , Software , Animals , Humans , RNA/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...