Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 318(5): R929-R939, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32130027

ABSTRACT

Women in low- and middle-income countries frequently consume a protein-deficient diet during pregnancy and breastfeeding. The effects of gestational malnutrition on fetal and early postnatal development can have lasting adverse effects on offspring metabolism. Expanding on previous studies in rodent models, we utilized a nonhuman primate model of gestational and early-life protein restriction (PR) to evaluate effects on the organ development and glucose metabolism of juvenile offspring. Offspring were born to dams that had consumed a control diet containing 26% protein or a PR diet containing 13% protein. Offspring were maintained on the PR diet and studied [body and serum measurements, intravenous glucose tolerance tests (ivGTTs), and dual-energy X-ray absorptiometry scans] up to 7 mo of age, at which time tissues were collected for analysis. PR offspring had age-appropriate body weight and were euglycemic but exhibited elevated fasting insulin and reduced initial, but increased total, insulin secretion during an ivGTT at 6 mo of age. No changes were detected in pancreatic islets of PR juveniles; however, PR did induce changes, including reduced kidney size, and changes in liver, adipose tissue, and muscle gene expression in other peripheral organs. Serum osteocalcin was elevated and bone mineral content and density were reduced in PR juveniles, indicating a significant impact of PR on early postnatal bone development.


Subject(s)
Animal Nutritional Physiological Phenomena , Diet, Protein-Restricted , Energy Metabolism , Fetal Growth Retardation/metabolism , Maternal Nutritional Physiological Phenomena , Prenatal Exposure Delayed Effects , Age Factors , Animals , Blood Glucose/metabolism , Body Composition , Bone Development , Disease Models, Animal , Energy Metabolism/genetics , Female , Fetal Growth Retardation/etiology , Fetal Growth Retardation/genetics , Fetal Growth Retardation/physiopathology , Gene Expression Regulation, Developmental , Insulin Resistance , Macaca mulatta , Male , Nutritional Status , Pregnancy
2.
Am J Physiol Regul Integr Comp Physiol ; 313(2): R169-R179, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28404581

ABSTRACT

Maternal high-fat-diet (HFD) consumption during pregnancy decreased fetal body weight and impacted development of hypothalamic melanocortin neural circuitry in nonhuman primate offspring. We investigated whether these impairments during gestation persisted in juvenile offspring and examined the interaction between maternal and early postnatal HFD consumption. Adult dams consumed either a control diet (CTR; 15% calories from fat) or a high-saturated-fat diet (HFD; 37% calories from fat) during pregnancy. Offspring were weaned onto a CTR or HFD at ~8 mo of age. Offspring from HFD-fed dams displayed early catch-up growth and elevated body weight at 6 and 13 mo of age. Maternal and postnatal HFD exposure reduced the amount of agouti-related peptide fibers in the paraventricular nucleus of the hypothalamus. Postnatal HFD consumption also decreased the amount of agouti-related peptide fibers in the arcuate nucleus of the hypothalamus. Postnatal HFD was associated with decreased food intake and increased activity. These results support and extend our previous findings of maternal diet effects on fetal development and reveal, for the first time in a nonhuman primate model, that maternal HFD-induced disturbances in offspring body weight regulation extended past gestation into the juvenile period. Maternal HFD consumption increases the risk for offspring developing obesity, with the developmental timing of HFD exposure differentially impacting the melanocortin system and energy balance regulation. The present findings provide translational insight into human clinical populations, suggesting that profound health consequences may await individuals later in life following intrauterine and postnatal HFD exposure.


Subject(s)
Diet, High-Fat/adverse effects , Eating , Hypothalamus/physiopathology , Melanocortins/metabolism , Obesity/physiopathology , Prenatal Exposure Delayed Effects/physiopathology , Animals , Energy Metabolism , Feeding Behavior , Female , Fetal Development , Humans , Macaca , Male , Obesity/etiology , Pregnancy , Pregnancy, Animal , Signal Transduction
3.
Obesity (Silver Spring) ; 23(11): 2157-64, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26530932

ABSTRACT

OBJECTIVE: To utilize a nonhuman primate model to examine the impact of maternal high-fat diet (HFD) consumption and pre-pregnancy obesity on offspring intake of palatable food and to examine whether maternal HFD consumption impaired development of the dopamine system, critical for the regulation of hedonic feeding. METHODS: The impact of exposure to maternal HFD and obesity on offspring consumption of diets of varying composition was assessed after weaning. The influence of maternal HFD consumption on the development of the prefrontal cortex-dopaminergic system at 13 months of age was also examined. RESULTS: During a preference test, offspring exposed to maternal HFD consumption and obesity displayed increased intake of food high in fat and sugar content relative to offspring from lean control mothers. Maternal HFD consumption suppressed offspring dopamine signaling (as assessed by immunohistochemistry) relative to control offspring. Specifically, there was decreased abundance of dopamine fibers and of dopamine receptor 1 and 2 proteins. CONCLUSIONS: This study reveals that offspring exposed to both maternal HFD consumption and maternal obesity during early development are at increased risk for obesity due to overconsumption of palatable energy-dense food, a behavior that may be related to reduced central dopamine signaling.


Subject(s)
Diet, High-Fat/adverse effects , Dopamine/metabolism , Eating/physiology , Maternal Nutritional Physiological Phenomena , Obesity/metabolism , Pregnancy Complications/metabolism , Prenatal Exposure Delayed Effects , Animals , Feeding Behavior/physiology , Female , Male , Models, Animal , Obesity/etiology , Pregnancy , Pregnancy Complications/physiopathology , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/physiopathology , Primates , Signal Transduction , Taste/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...