Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Biol Psychiatry Glob Open Sci ; 3(1): 78-86, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36712569

ABSTRACT

Background: Aberrant dopamine neuron activity is attributable to hyperactivity in hippocampal subfields driving a pathological increase in dopamine neuron activity, which is positively correlated with psychosis in humans. Evidence indicates that hippocampal hyperactivity is due to loss of intrinsic GABAergic (gamma-aminobutyric acidergic) inhibition. We have previously demonstrated that hippocampal GABAergic neurotransmission can be modulated by targeting α5-GABAA receptors, which are preferentially expressed in hippocampal regions. Positive and negative allosteric modulators of α5-GABAA receptors (α5-PAMs and α5-NAMs) elicit effects on hippocampal-dependent behaviors. We posited that the selective manipulation of hippocampal inhibition, using α5-PAMs or α5-NAMs, would modulate dopamine activity in control rats. Further, α5-PAMs would reverse aberrant dopamine neuron activity in a rodent model with schizophrenia-related pathophysiologies (methylazoxymethanol acetate [MAM] model). Methods: We performed in vivo extracellular recordings of ventral tegmental area dopamine neurons in anesthetized rats to compare the effects of two novel, selective α5-PAMs (GL-II-73, MP-III-022), a nonselective α-PAM (midazolam), and two selective α5-NAMs (L-655,708, TB 21007) in control and MAM-treated male Sprague Dawley rats (n = 5-9). Results: Systemic or intracranial administration of selective α5-GABAA receptor modulators regulated dopamine activity. Specifically, both α5-NAMs increased dopamine neuron activity in control rats, whereas GL-II-73, MP-III-022, and L-655,708 attenuated aberrant dopamine neuron activity in MAM-treated rats, an effect mediated by the ventral hippocampus. Conclusions: This study demonstrated that α5-GABAA receptor modulation can regulate dopamine neuron activity under control or abnormal activity, providing additional evidence that α5-PAMs and α5-NAMs may have therapeutic applications in psychosis and other psychiatric diseases where aberrant hippocampal activity is present.

2.
Int J Neuropsychopharmacol ; 25(8): 688-698, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35732272

ABSTRACT

BACKGROUND: Up to 64% of patients diagnosed with posttraumatic stress disorder (PTSD) experience psychosis, likely attributable to aberrant dopamine neuron activity. We have previously demonstrated that positive allosteric modulators of α5-GABAARs can selectively decrease hippocampal activity and reverse psychosis-like physiological and behavioral alterations in a rodent model used to study schizophrenia; however, whether this approach translates to a PTSD model remains to be elucidated. METHODS: We utilized a 2-day inescapable foot shock (IS) procedure to induce stress-related pathophysiology in male Sprague-Dawley rats. We evaluated the effects of intra-ventral hippocampus (vHipp) administration GL-II-73, an α5-GABAAR, or viral overexpression of the α5 subunit, using in vivo electrophysiology and behavioral measures in control and IS-treated rats. RESULTS: IS significantly increased ventral tegmental area dopamine neuron population activity, or the number of dopamine neurons firing spontaneously (n = 6; P = .016), consistent with observation in multiple rodent models used to study psychosis. IS also induced deficits in sensorimotor gating, as measured by reduced prepulse inhibition of startle (n = 12; P = .039). Interestingly, intra-vHipp administration of GL-II-73 completely reversed IS-induced increases in dopamine neuron population activity (n = 6; P = .024) and deficits in prepulse inhibition (n = 8; P = .025), whereas viral overexpression of the α5 subunit in the vHipp was not effective. CONCLUSIONS: Our results demonstrate that pharmacological intervention augmenting α5-GABAAR function, but not α5 overexpression in itself, can reverse stress-induced deficits related to PTSD in a rodent model, providing a potential site of therapeutic intervention to treat comorbid psychosis in PTSD.


Subject(s)
Dopamine , Receptors, GABA-A , Stress, Psychological , Allosteric Regulation/genetics , Allosteric Regulation/physiology , Animals , Dopamine/genetics , Dopamine/metabolism , Hippocampus , Male , Prepulse Inhibition/genetics , Prepulse Inhibition/physiology , Rats , Rats, Sprague-Dawley , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Stress, Psychological/genetics , Stress, Psychological/metabolism
3.
Front Pain Res (Lausanne) ; 3: 752256, 2022.
Article in English | MEDLINE | ID: mdl-35295795

ABSTRACT

Background and Objectives: Patients taking opioids are at risk of developing dependence and possibly abuse. Given the role of the mesolimbic dopamine system in opioid reward, blocking dopamine D2 receptors should limit the abuse liability of opioid analgesics. This pilot study evaluates the analgesic efficacy of oxycodone combined with an atypical antipsychotic (dopamine D2 receptor antagonist). Methods: A randomized, double-blind, within-subjects, controlled trial in healthy volunteers was conducted at UT Health SA Pain Clinic. Fifteen volunteers with previous medical exposure to opioids were enrolled. Risperidone (2 mg) or ziprasidone (80 mg) in combination with oxycodone (5, 10, 15 mg) was administered. Pain intensity using the cold pressor test, Current Opioid Misuse Measure (COMM), Addiction Research Center Inventory (ARCI, opioid subscale), Drug likability with drug effects questionnaire (DEQ) were assessed. Results: Oxycodone produced dose dependent increases in thermal analgesia on the cold pressor test that was significant at 10 and 15 mg (t = 3.087, P = 0.017). The combination did not significantly alter thermal analgesia. There was no significant effect of the combination on the ARCI or the POMS. Discussion and Conclusion: The combination of an atypical antipsychotic with oxycodone does not alter analgesic response or increase the incidence of adverse effects when compared to oxycodone alone. Such information is critical for the development of drug combinations for the treatment of pain and provide the foundation for future studies of abuse potential in drug users. Scientific Significance: This intervention in chronic pain patients is unique because it utilizes FDA approved drugs in combination to reduce abuse liability. The first step, and aim of this study, is to confirm the drug combination does not interfere with analgesic efficacy. The next step is to examine the combination in recreational drug users to assess the potential to block the euphoric effects of oxycodone. Ultimately, if this combination is effective, this approach could be beneficial in management of chronic pain.

4.
Neuropsychopharmacology ; 45(13): 2289-2298, 2020 12.
Article in English | MEDLINE | ID: mdl-32688367

ABSTRACT

Previous research has demonstrated that selective modulation of hippocampal transmission by systemic administration of an α5-GABAA receptor negative allosteric modulator, L-655,708, reproduces the sustained antidepressant-like (AD-like) effect of R,S-ketamine in the absence of any psychotomimetic or abuse-related effects. Pharmacological, electrophysiological (whole-cell patch clamp), and behavioral approaches were used to examine the mechanisms by which L-655,708 produces plasticity within the hippocampus that accounts for its sustained AD-like effect in rats. Inhibitors of either transcription or translation prevented the sustained AD-like effect of L-655,708. Unlike R,S-ketamine, L-655,708 did not cause an increase in the phosphorylation of the receptor for BDNF, TrkB, in the ventral hippocampus (vHipp) 30 or 60 min after its administration nor did administration of the TrkB inhibitor, K252a, directly into the vHipp, block the sustained AD-like effect of L-655,708. Similar to previous results with R,S-ketamine, administration of L-655,709 increased levels of GluA1 in the mPFC and, blockade of such receptors by direct administration of NBQX into the mPFC blocked the sustained AD-like effect of L-655,708. Patch-clamp recordings of ventral CA1 pyramidal cells 24 h after a single systemic administration of L-655,708 revealed a significant increase in input resistance, which resulted in an approximately two-fold increase in action potential frequency. These experiments indicate that the sustained AD-like effects of L-655,708 require protein synthesis and plasticity of GluA1 glutamate receptors in the mPFC. The drug also caused changes in GABAA receptor gating properties in the vHipp with resultant changes in ventral CA1 that indirectly increases neuronal excitability. Such effects likely contribute to its sustained AD-like activity.


Subject(s)
Antidepressive Agents , Ketamine , Animals , Antidepressive Agents/pharmacology , Hippocampus , Imidazoles , Ketamine/pharmacology , Rats
5.
Behav Brain Res ; 383: 112532, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32023492

ABSTRACT

Numerous randomized double-blind clinical trials have consistently shown that that a single intravenous administration of a subanesthetic dose of ketamine to treatment-resistant depressed patients significantly improved depressive symptomatology rapidly, within two hours, with the effect lasting up to seven days. Despite its very promising effects, ketamine has long been associated with potential for abuse as it can cause psychotropic side effects, such as hallucinations, false beliefs, and severe impairments in judgment and other cognitive processes. Consequently, within the last two decades preclinical research has been carried out aimed at understanding its mechanisms of action and the brain circuits involved in ketamine's antidepressant effects, both of which are discussed in this review. Furthermore, with the hippocampus being a key target for ketamine's beneficial antidepressant effects, we and others have begun to examine behavioral and neurochemical effects of drugs that act selectively on the hippocampus due to the preferential location of their receptor targets. Such drugs are negative allosteric modulators (NAMs) and positive allosteric modulator (PAM) of the α5-GABAA receptor. Such compounds are discussed within the framework of how lessons learned with ketamine point to novel classes of drugs, targeting the GABAergic system, that can recapitulate the antidepressant effects of ketamine without its adverse effects.


Subject(s)
Antidepressive Agents/therapeutic use , Depressive Disorder, Major/drug therapy , Depressive Disorder, Treatment-Resistant/drug therapy , Drug Development , Ketamine/therapeutic use , Allosteric Regulation , Animals , Antidepressive Agents/pharmacology , Depressive Disorder, Major/metabolism , Depressive Disorder, Treatment-Resistant/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Ketamine/pharmacology , Molecular Targeted Therapy , Neural Pathways , Receptors, GABA-A/drug effects , Receptors, GABA-A/metabolism , Receptors, N-Methyl-D-Aspartate/drug effects , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, Opioid, mu/drug effects , Receptors, Opioid, mu/metabolism
7.
Neurotherapeutics ; 14(3): 716-727, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28585221

ABSTRACT

Major depressive disorder (MDD) is prevalent. Although standards antidepressants are more effective than placebo, up to 35% of patients do not respond to 4 or more conventional treatments and are considered to have treatment-resistant depression (TRD). Considerable effort has been devoted to trying to find effective treatments for TRD. This review focuses on vagus nerve stimulation (VNS), approved for TRD in 2005 by the Food and Drugs Administration. Stimulation is carried by bipolar electrodes on the left cervical vagus nerve, which are attached to an implanted stimulator generator. The vagus bundle contains about 80% of afferent fibers terminating in the medulla, from which there are projections to many areas of brain, including the limbic forebrain. Various types of brain imaging studies reveal widespread functional effects in brain after either acute or chronic VNS. Although more randomized control trials of VNS need to be carried out before a definitive conclusion can be reached about its efficacy, the results of open studies, carried out over period of 1 to 2 years, show much more efficacy when compared with results from treatment as usual studies. There is an increase in clinical response to VNS between 3 and 12 months, which is quite different from that seen with standard antidepressant treatment of MDD. Preclinically, VNS affects many of the same brain areas, neurotransmitters (serotonin, norepinephrine) and signal transduction mechanisms (brain-derived neurotrophic factor-tropomyosin receptor kinase B) as those found with traditional antidepressants. Nevertheless, the mechanisms by which VNS benefits patients nonresponsive to conventional antidepressants is unclear, with further research needed to clarify this.


Subject(s)
Depression/therapy , Vagus Nerve Stimulation/methods , Humans
8.
Int J Neuropsychopharmacol ; 20(6): 504-509, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28339593

ABSTRACT

Background: Selective augmentation of hippocampal activity in ways similar to that caused by ketamine may have therapeutic advantages over ketamine, which has psychotomimetic and reinforcing effects likely due to effects outside the hippocampus (i.e., off-target effects). Methods: Here we evaluated the antidepressant-like response to a negative allosteric modulator of α5 subunit- containing gamma aminobutyric acid subtype A receptors, L-655,708, as these receptors are expressed to a much greater extent in the hippocampus than in other brain areas. Results: Systemic administration of L-655,708 produced a sustained antidepressant-like effect in the forced swim test that was comparable with that of ketamine and was blocked by hippocampal inactivation with lidocaine. However, in contrast to ketamine, L-655,708 did not affect prepulse inhibition of startle, nor did it maintain responding in rats trained to self-administer i.v. ketamine. Conclusion: Taken together, these findings suggest that activation of the hippocampus by L-655,708 produces an antidepressant-like effect in the absence of any psychotomimetic or abuse-related effects.


Subject(s)
Antidepressive Agents/pharmacology , Hippocampus/drug effects , Imidazoles/pharmacology , Animals , Depressive Disorder/drug therapy , Depressive Disorder/metabolism , Hippocampus/metabolism , Ketamine/pharmacology , Lidocaine , Prepulse Inhibition/drug effects , Prepulse Inhibition/physiology , Rats, Sprague-Dawley , Receptors, GABA-A/metabolism , Reflex, Startle/drug effects , Reflex, Startle/physiology , Self Administration , Substance-Related Disorders/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL