Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
EBioMedicine ; 105: 105189, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38851058

ABSTRACT

BACKGROUND: The interaction between iron status and malaria is incompletely understood. We evaluated longitudinal changes in iron homeostasis in volunteers enrolled in malaria volunteer infection studies (VIS) and in Malaysian patients with falciparum and vivax malaria. METHODS: We retrieved data and samples from 55 participants (19 female) enrolled in malaria VIS, and 171 patients (45 female) with malaria and 30 healthy controls (13 female) enrolled in clinical studies in Malaysia. Ferritin, hepcidin, erythropoietin, and soluble transferrin receptor (sTfR) were measured by ELISA. FINDINGS: In the VIS, participants' parasitaemia was correlated with baseline mean corpuscular volume (MCV), but not iron status (ferritin, hepcidin or sTfR). Ferritin, hepcidin and sTfR all increased during the VIS. Ferritin and hepcidin normalised by day 28, while sTfR remained elevated. In VIS participants, baseline ferritin was associated with post-treatment increases in liver transaminase levels. In Malaysian patients with malaria, hepcidin and ferritin were elevated on admission compared to healthy controls, while sTfR increased following admission. By day 28, hepcidin had normalised; however, ferritin and sTfR both remained elevated. INTERPRETATION: Our findings demonstrate that parasitaemia is associated with an individual's MCV rather than iron status. The persistent elevation in sTfR 4 weeks post-infection in both malaria VIS and clinical malaria may reflect a causal link between malaria and iron deficiency. FUNDING: National Health and Medical Research Council (Program Grant 1037304, Project Grants 1045156 and 1156809; Investigator Grants 2016792 to BEB, 2016396 to JCM, 2017436 to MJG); US National Institute of Health (R01-AI116472-03); Malaysian Ministry of Health (BP00500420).


Subject(s)
Ferritins , Hepcidins , Homeostasis , Iron , Malaria , Humans , Female , Iron/metabolism , Iron/blood , Male , Adult , Hepcidins/blood , Hepcidins/metabolism , Malaria/blood , Malaria/parasitology , Malaria/metabolism , Ferritins/blood , Receptors, Transferrin/metabolism , Receptors, Transferrin/blood , Middle Aged , Malaysia/epidemiology , Young Adult , Longitudinal Studies , Malaria, Falciparum/parasitology , Malaria, Falciparum/blood , Malaria, Falciparum/metabolism , Erythropoietin/metabolism , Erythropoietin/blood , Biomarkers , Parasitemia/blood
2.
Br J Haematol ; 204(3): 759-773, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253961

ABSTRACT

Iron deficiency (ID) and iron-deficiency anaemia (IDA) are global public health concerns, most commonly afflicting children, pregnant women and women of childbearing age. Pathological outcomes of ID include delayed cognitive development in children, adverse pregnancy outcomes and decreased work capacity in adults. IDA is usually treated by oral iron supplementation, typically using iron salts (e.g. FeSO4 ); however, dosing at several-fold above the RDA may be required due to less efficient absorption. Excess enteral iron causes adverse gastrointestinal side effects, thus reducing compliance, and negatively impacts the gut microbiome. Recent research has sought to identify new iron formulations with better absorption so that lower effective dosing can be utilized. This article outlines emerging research on oral iron supplementation and focuses on molecular mechanisms by which different supplemental forms of iron are transported across the intestinal epithelium and whether these transport pathways are subject to regulation by the iron-regulatory hormone hepcidin.


Subject(s)
Anemia, Iron-Deficiency , Iron Deficiencies , Iron Overload , Adult , Child , Female , Humans , Pregnancy , Iron/metabolism , Anemia, Iron-Deficiency/therapy , Iron Overload/drug therapy
3.
Int J Mol Sci ; 24(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37762679

ABSTRACT

In order to supply adequate iron during pregnancy, the levels of the iron regulatory hormone hepcidin in the maternal circulation are suppressed, thereby increasing dietary iron absorption and storage iron release. Whether this decrease in maternal hepcidin is caused by changes in factors known to regulate hepcidin expression, or by other unidentified pregnancy factors, is not known. To investigate this, we examined iron parameters during pregnancy in mice. We observed that hepatic iron stores and transferrin saturation, both established regulators of hepcidin production, were decreased in mid and late pregnancy in normal and iron loaded dams, indicating an increase in iron utilization. This can be explained by a significant increase in maternal erythropoiesis, a known suppressor of hepcidin production, by mid-pregnancy, as indicated by an elevation in circulating erythropoietin and an increase in spleen size and splenic iron uptake. Iron utilization increased further in late pregnancy due to elevated fetal iron demand. By increasing maternal iron levels in late gestation, we were able to stimulate the expression of the gene encoding hepcidin, suggesting that the iron status of the mother is the predominant factor influencing hepcidin levels during pregnancy. Our data indicate that pregnancy-induced hepcidin suppression likely occurs because of reductions in maternal iron reserves due to increased iron requirements, which predominantly reflect stimulated erythropoiesis in mid-gestation and increased fetal iron requirements in late gestation, and that there is no need to invoke other factors, including novel pregnancy factor(s), to explain these changes.


Subject(s)
Hepcidins , Iron Deficiencies , Female , Pregnancy , Mice , Animals , Hepcidins/genetics , Hepcidins/metabolism , Iron/metabolism , Iron, Dietary , Fetus/metabolism , Erythropoiesis
4.
Data Brief ; 48: 109092, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37020898

ABSTRACT

This article presents the comprehensive mechanical testing data archive from a neutron irradiation campaign of nuclear structural alloys fabricated by powder metallurgy with hot isostatic pressing (PM-HIP). The irradiation campaign was designed to facilitate a direct comparison of PM-HIP to conventional casting or forging. Five common nuclear structural alloys were included in the campaign: 316L stainless steel, SA508 pressure vessel steel, Grade 91 ferritic steel, and Ni-base alloys 625 and 690. Irradiations were carried out in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to target doses of 1 and 3 displacements per atom (dpa) at target temperatures of 300 and 400 °C. This article contains the data collected from post-irradiation uniaxial tensile tests following ASTM E8 specifications, fractography of these tensile bars, and nanoindentation. By making this systematic and valuable neutron irradiated mechanical behavior dataset openly available to the nuclear materials research community, researchers may now use this data to populate material performance databases, validate material performance and hardening models, design follow-on experiments, and enable future nuclear code-qualification of PM-HIP techniques.

5.
Biometals ; 36(2): 263-281, 2023 04.
Article in English | MEDLINE | ID: mdl-35167013

ABSTRACT

The mammalian multicopper ferroxidases (MCFs) ceruloplasmin (CP), hephaestin (HEPH) and zyklopen (ZP) comprise a family of conserved enzymes that are essential for body iron homeostasis. Each of these enzymes contains six biosynthetically incorporated copper atoms which act as intermediate electron acceptors, and the oxidation of iron is associated with the four electron reduction of dioxygen to generate two water molecules. CP occurs in both a secreted and GPI-linked (membrane-bound) form, while HEPH and ZP each contain a single C-terminal transmembrane domain. These enzymes function to ensure the efficient oxidation of iron so that it can be effectively released from tissues via the iron export protein ferroportin and subsequently bound to the iron carrier protein transferrin in the blood. CP is particularly important in facilitating iron release from the liver and central nervous system, HEPH is the major MCF in the small intestine and is critical for dietary iron absorption, and ZP is important for normal hair development. CP and HEPH (and possibly ZP) function in multiple tissues. These proteins also play other (non-iron-related) physiological roles, but many of these are ill-defined. In addition to disrupting iron homeostasis, MCF dysfunction perturbs neurological and immune function, alters cancer susceptibility, and causes hair loss, but, despite their importance, how MCFs co-ordinately maintain body iron homeostasis and perform other functions remains incompletely understood.


Subject(s)
Ceruloplasmin , Copper , Animals , Mice , Copper/metabolism , Ceruloplasmin/metabolism , Mice, Knockout , Oxidation-Reduction , Biology , Mammals/metabolism
6.
medRxiv ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38196596

ABSTRACT

Background: The interaction between iron deficiency and malaria is incompletely understood. We evaluated longitudinal changes in iron homeostasis in volunteers enrolled in malaria volunteer infection studies (VIS) and in Malaysian patients with falciparum and vivax malaria. Methods: We retrieved samples and associated data from 55 participants enrolled in malaria VIS, and 171 malaria patients and 30 healthy controls enrolled in clinical studies in Malaysia. Ferritin, hepcidin, erythropoietin, and soluble transferrin receptor (sTfR) were measured by ELISA. Results: In the VIS, participants' parasitaemia was correlated with baseline mean corpuscular volume (MCV), but not iron status (ferritin, hepcidin or sTfR). Ferritin, hepcidin and sTfR all increased during the VIS. Ferritin and hepcidin normalised by day 28, while sTfR remained elevated. In VIS participants, baseline iron status (ferritin) was associated with post-treatment increases in liver transaminase levels. In Malaysian malaria patients, hepcidin and ferritin were elevated on admission compared to healthy controls, while sTfR increased following admission. Hepcidin normalised by day 28; however, ferritin and sTfR both remained elevated 4 weeks following admission. Conclusion: Our findings demonstrate that parasitaemia is associated with an individual's MCV rather than iron status. The persistent elevation in sTfR 4 weeks post-infection in both malaria VIS and clinical malaria may reflect a causal link between malaria and iron deficiency.

7.
Molecules ; 27(19)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36235117

ABSTRACT

The protein HFE (homeostatic iron regulator) is a key regulator of iron metabolism, and mutations in HFE underlie the most frequent form of hereditary haemochromatosis (HH-type I). Studies have shown that HFE interacts with transferrin receptor 1 (TFR1), a homodimeric type II transmembrane glycoprotein that is responsible for the cellular uptake of iron via iron-loaded transferrin (holo-transferrin) binding. It has been hypothesised that the HFE/TFR1 interaction serves as a sensor to the level of iron-loaded transferrin in circulation by means of a competition mechanism between HFE and iron-loaded transferrin association with TFR1. To investigate this, a series of peptides based on the helical binding interface between HFE and TFR1 were generated and shown to significantly interfere with the HFE/TFR1 interaction in an in vitro proximity ligation assay. The helical conformation of one of these peptides, corresponding to the α1 and α2 helices of HFE, was stabilised by the introduction of sidechain lactam "staples", but this did not result in an increase in the ability of the peptide to disrupt the HFE/TFR1 interaction. These peptides inhibitors of the protein-protein interaction between HFE and TFR1 are potentially useful tools for the analysis of the functional role of HFE in the regulation of hepcidin expression.


Subject(s)
Hemochromatosis , Hepcidins , Hemochromatosis/genetics , Hemochromatosis/metabolism , Hemochromatosis Protein/genetics , Hemochromatosis Protein/metabolism , Hepcidins/metabolism , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Humans , Iron/metabolism , Lactams , Membrane Proteins/genetics , Membrane Proteins/metabolism , Peptides/metabolism , Peptides/pharmacology , Receptors, Transferrin/metabolism , Transferrin/metabolism
9.
J Periodontal Res ; 57(2): 294-304, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34855211

ABSTRACT

OBJECTIVE: To investigate the effect of Hfe gene mutation on the distribution of iron and periodontal bone loss in periodontal tissues. BACKGROUND DATA: It remains unclear how tissue iron loading affects the periodontium architectures in a genetic animal model of hereditary haemochromatosis (HH). METHODS: Male C57BL/6 Hfe -/- (8 weeks old) and wild-type (WT) mice were utilized to examine the iron distribution in periodontal tissues, as well as periodontal tissues changes using micro-computed tomography and histomorphometric analysis. Furthermore, tissue inflammatory mediators, bone markers and periodontal pathogens were carried out in PFA-fixed paraffin-embedded tissues using ELISA, RT-qPCR and genomic DNA qPCR, respectively. RESULTS: Excessive iron deposition was found in the periodontal ligament, gingiva and alveolar bone in Hfe -/- mice relative to their WT counterparts. This, in turn, was associated with significant periodontal bone loss, increased cemento-enamel junction-alveolar bone crest distance and decreased expression of molecules involved in bone development and turnover. Furthermore, the pro-inflammatory cytokine - interleukin 6 and periodontal bacteria - Campylobacter rectus were significantly increased in Hfe -/- mice compared with WT controls. CONCLUSION: Our results suggest that the iron loading in a mouse model of HH decreases alveolar bone formation and leads to alterations in the inflammatory state in the periodontium. Periodontal health should be assessed during the clinical assessment of HFE-HH patients.


Subject(s)
Hemochromatosis , Animals , Disease Models, Animal , Hemochromatosis/complications , Hemochromatosis/genetics , Hemochromatosis/metabolism , Hemochromatosis Protein/genetics , Hemochromatosis Protein/metabolism , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Humans , Iron/metabolism , Liver/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , X-Ray Microtomography
10.
Biometals ; 35(1): 27-38, 2022 02.
Article in English | MEDLINE | ID: mdl-34697758

ABSTRACT

Iron deficiency is one of the most common nutritional deficiencies worldwide and is often treated with oral iron supplements. However, commonly used supplements, including those based on ferrous iron salts, are associated with gastrointestinal side effects and unfavorable changes in the intestinal microbiome. Sucrosomial® iron is a novel iron formulation that is effective at treating iron deficiency, and with fewer gastrointestinal side effects, yet its effect on the gut microbiome has not been examined previously. Thus, we treated mice for two weeks with diets containing either Sucrosomial® iron or ferrous sulfate as the sole iron source and examined bacterial communities in the intestine using 16S Microbial Profiling of DNA extracted from feces collected both prior to and following dietary treatment. Mice treated with Sucrosomial® iron showed an increase in Shannon diversity over the course of the study. This was associated with a decrease in the abundance of the phylum Proteobacteria, which contains many pathogenic species, and an increase in short chain fatty acid producing bacteria such as Lachnospiraceae, Oscillibacter and Faecalibaculum. None of these changes were observed in mice treated with ferrous sulfate. These results suggest that Sucrosomial® iron may have a beneficial effect on the intestinal microbiome when compared to ferrous sulfate and that this form of iron is a promising alternative to ferrous iron salts for the treatment of iron deficiency.


Subject(s)
Anemia, Iron-Deficiency , Gastrointestinal Microbiome , Iron Deficiencies , Anemia, Iron-Deficiency/drug therapy , Animals , Dietary Supplements , Ferrous Compounds/pharmacology , Iron , Mice , Salts/therapeutic use
11.
J Nutr ; 152(3): 714-722, 2022 03 03.
Article in English | MEDLINE | ID: mdl-34625812

ABSTRACT

BACKGROUND: Many women enter pregnancy with iron stores that are insufficient to maintain maternal iron balance and support fetal development and consequently, often require iron supplements. However, the side effects associated with many currently available iron supplements can limit compliance. OBJECTIVE: This study aimed to test the safety and efficacy of a novel nanoparticulate iron supplement, a dietary ferritin analog termed iron hydroxide adipate tartrate (IHAT), in pregnant mice. METHODS: Female C57BL/6 mice were maintained on either an iron-deficient or a control diet for 2 wk prior to timed mating to develop iron-deficient or iron-sufficient pregnancy models, respectively. Mice from each model were then gavaged daily with 10 mg iron/kg body weight as either IHAT or ferrous sulfate, or with water only, beginning on embryonic day (E) 4.5. Mice were killed on E18.5 and maternal iron and hematological parameters were measured. The expression of genes encoding iron transporters and oxidative stress markers in the duodenum and placenta were determined, along with hepatic expression of the gene encoding the iron regulatory hormone hepcidin and fetal iron. RESULTS: Oral IHAT and ferrous sulfate were equally effective at increasing maternal hemoglobin (20.2% and 16.9%, respectively) and hepatic iron (30.2% and 29.3%, respectively), as well as total fetal iron (99.7% and 83.8%, respectively), in iron-deficient pregnant mice compared with those gavaged with water only, with no change in oxidative stress markers seen with either treatment. However, there was a significant increase in the placental expression of the oxidative stress marker heme oxygenase 1 in iron-replete pregnant mice treated with ferrous sulfate when compared with iron-replete pregnant mice gavaged with IHAT (96.9%, P <0.05). CONCLUSIONS: IHAT has proved a safe and effective alternative to oral ferrous sulfate in mice, and it has potential for treating iron deficiency in human pregnancy.


Subject(s)
Anemia, Iron-Deficiency , Iron Deficiencies , Anemia, Iron-Deficiency/drug therapy , Animals , Female , Ferritins/therapeutic use , Ferrous Compounds/therapeutic use , Hemoglobins/analysis , Humans , Iron , Mice , Mice, Inbred C57BL , Placenta/chemistry , Pregnancy , Water
12.
Biol Res ; 54(1): 38, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34903297

ABSTRACT

BACKGROUND: Defective chloride transport in airway epithelial cells (AECs) and the associated lung disease are the main causes of morbidity and early mortality in cystic fibrosis (CF). Abnormal airway iron homeostasis and the presence of lipid peroxidation products, indicative of oxidative stress, are features of CF lung disease. RESULTS: Here, we report that CF AECs (IB3-1) are susceptible to ferroptosis, a type of cell death associated with iron accumulation and lipid peroxidation. Compared to isogenic CFTR corrected cells (C38), the IB3-1 cells showed increased susceptibility to cell death upon exposure to iron in the form of ferric ammonium citrate (FAC) and the ferroptosis inducer, erastin. This phenotype was accompanied by accumulation of intracellular ferrous iron and lipid peroxides and the extracellular release of malondialdehyde, all indicative of redox stress, and increased levels of lactate dehydrogenase in the culture supernatant, indicating enhanced cell injury. The ferric iron chelator deferoxamine (DFO) and the lipophilic antioxidant ferrostatin-1 inhibited FAC and erastin induced ferroptosis in IB3-1 cells. Glutathione peroxidase 4 (GPX4) expression was decreased in IB3-1 cells treated with FAC and erastin, but was unchanged in C38 AECs. Necroptosis appeared to be involved in the enhanced susceptibility of IB3-1 AECs to ferroptosis, as evidenced by partial cell death rescue with necroptosis inhibitors and enhanced mixed lineage kinase domain-like (MLKL) localisation to the plasma membrane. CONCLUSION: These studies suggest that the increased susceptibility of CF AECs to ferroptosis is linked to abnormal intracellular ferrous iron accumulation and reduced antioxidant defences. In addition, the process of ferroptotic cell death in CF AECs does not appear to be a single entity and for the first time we describe necroptosis as a potential contributory factor. Iron chelation and antioxidant treatments may be promising therapeutic interventions in cystic fibrosis.


Subject(s)
Cystic Fibrosis , Ferroptosis , Cell Death , Epithelial Cells , Humans , Lipid Peroxidation
13.
Nutrients ; 13(12)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34960012

ABSTRACT

Maternal iron deficiency occurs in 40-50% of all pregnancies and is associated with an increased risk of respiratory disease and asthma in children. We used murine models to examine the effects of lower iron status during pregnancy on lung function, inflammation and structure, as well as its contribution to increased severity of asthma in the offspring. A low iron diet during pregnancy impairs lung function, increases airway inflammation, and alters lung structure in the absence and presence of experimental asthma. A low iron diet during pregnancy further increases these major disease features in offspring with experimental asthma. Importantly, a low iron diet increases neutrophilic inflammation, which is indicative of more severe disease, in asthma. Together, our data demonstrate that lower dietary iron and systemic deficiency during pregnancy can lead to physiological, immunological and anatomical changes in the lungs and airways of offspring that predispose to greater susceptibility to respiratory disease. These findings suggest that correcting iron deficiency in pregnancy using iron supplements may play an important role in preventing or reducing the severity of respiratory disease in offspring. They also highlight the utility of experimental models for understanding how iron status in pregnancy affects disease outcomes in offspring and provide a means for testing the efficacy of different iron supplements for preventing disease.


Subject(s)
Iron Deficiencies/complications , Iron/administration & dosage , Respiratory Tract Diseases/etiology , Animals , Collagen/metabolism , Egg Proteins, Dietary , Female , Inflammation/etiology , Lung/growth & development , Lung/pathology , Maternal Nutritional Physiological Phenomena , Mice , Mice, Inbred BALB C , Pregnancy , Prenatal Exposure Delayed Effects , Prenatal Nutritional Physiological Phenomena
15.
J Nutr ; 151(9): 2541-2550, 2021 09 04.
Article in English | MEDLINE | ID: mdl-34114013

ABSTRACT

BACKGROUND: The ferroxidase zyklopen (Zp) has been implicated in the placental transfer of iron to the fetus. However, the evidence for this is largely circumstantial. OBJECTIVES: This study aimed to determine whether Zp is essential for placental iron transfer. METHODS: A model was established using 8- to 12-wk-old pregnant C57BL/6 mice on standard rodent chow in which Zp was knocked out in the fetus and fetal components of the placenta. Zp was also disrupted in the entire placenta using global Zp knockout mice. Inductively coupled plasma MS was used to measure total fetal iron, an indicator of the amount of iron transferred by the placenta to the fetus, at embryonic day 18.5 of gestation. Iron transporter expression in the placenta was measured by Western blotting, and the expression of Hamp1, the gene encoding the iron regulatory hormone hepcidin, was determined in fetal liver by real-time PCR. RESULTS: There was no change in the amount of iron transferred to the fetus when Zp was disrupted in either the fetal component of the placenta or the entire placenta. No compensatory changes in the expression of the iron transport proteins transferrin receptor 1 or ferroportin were observed, nor was there any change in fetal liver Hamp1 mRNA. Hephl1, the gene encoding Zp, was expressed mainly in the maternal decidua of the placenta and not in the nutrient-transporting syncytiotrophoblast. Disruption of Zp in the whole placenta resulted in a 26% increase in placental size (P < 0.01). CONCLUSIONS: Our data indicate that Zp is not essential for the efficient transfer of iron to the fetus in mice and is localized predominantly in the maternal decidua. The increase in placental size observed when Zp is knocked out in the entire placenta suggests that this protein may play a role in placental development.


Subject(s)
Ceruloplasmin , Placenta , Animals , Ceruloplasmin/genetics , Female , Fetus/metabolism , Iron/metabolism , Mice , Mice, Inbred C57BL , Placenta/metabolism , Placentation , Pregnancy
16.
Biol. Res ; 54: 38-38, 2021. ilus, tab
Article in English | LILACS | ID: biblio-1505823

ABSTRACT

BACKGROUND: Defective chloride transport in airway epithelial cells (AECs) and the associated lung disease are the main causes of morbidity and early mortality in cystic fibrosis (CF). Abnormal airway iron homeostasis and the presence of lipid peroxidation products, indicative of oxidative stress, are features of CF lung disease. RESULTS: Here, we report that CF AECs (IB3-1) are susceptible to ferroptosis, a type of cell death associated with iron accumulation and lipid peroxidation. Compared to isogenic CFTR corrected cells (C38), the IB3-1 cells showed increased susceptibility to cell death upon exposure to iron in the form of ferric ammonium citrate (FAC) and the ferroptosis inducer, erastin. This phenotype was accompanied by accumulation of intracellular ferrous iron and lipid peroxides and the extracellular release of malondialdehyde, all indicative of redox stress, and increased levels of lactate dehydrogenase in the culture supernatant, indicating enhanced cell injury. The ferric iron chelator defer-oxamine (DFO) and the lipophilic antioxidant ferrostatin-1 inhibited FAC and erastin induced ferroptosis in IB3-1 cells. Glutathione peroxidase 4 (GPX4) expression was decreased in IB3-1 cells treated with FAC and erastin, but was unchanged in C38 AECs. Necroptosis appeared to be involved in the enhanced susceptibility of IB3-1 AECs to ferroptosis, as evidenced by partial cell death rescue with necroptosis inhibitors and enhanced mixed lineage kinase domain-like (MLKL) localisation to the plasma membrane. CONCLUSION: These studies suggest that the increased susceptibility of CF AECs to ferroptosis is linked to abnormal intracellular ferrous iron accumulation and reduced antioxidant defences. In addition, the process of ferroptotic cell death in CF AECs does not appear to be a single entity and for the first time we describe necroptosis as a potential contributory factor. Iron chelation and antioxidant treatments may be promising therapeutic interventions in cystic fibrosis.


Subject(s)
Humans , Cystic Fibrosis , Ferroptosis , Lipid Peroxidation , Cell Death , Epithelial Cells
17.
Prev Chronic Dis ; 17: E122, 2020 10 08.
Article in English | MEDLINE | ID: mdl-33034557

ABSTRACT

INTRODUCTION: Significant disparities are apparent in geographic areas and among racial/ethnic minority groups in Wisconsin. Cancer disparities are complex and multifactorial and require collaborative, multilevel efforts to reduce their impact. Our objective was to understand cancer disparities and identify opportunities to collaborate across community and research sectors to address them. METHODS: From May 2017 through October 2018, we assembled groups of community members and researchers and conducted 10 listening sessions and 29 interviews with a total of 205 participants from diverse backgrounds. Listening sessions and interviews were scheduled on the basis of participant preference and consisted of a brief review of maps illustrating the breast and lung cancer burden across Wisconsin, and a semistructured set of questions regarding causes, solutions, and opportunities. Interviews followed the same structure as listening sessions, but were conducted between a facilitator and 1 or 2 individuals. Major themes were summarized from all sessions and coded. We used the Model for Analysis of Population Health and Health Disparities to identify areas for collaboration and to highlight differences in emphasis between community participants and researchers. RESULTS: Participants identified the need to address individual behavioral risks and medical mistrust and to build equitable multilevel partnerships. Communities provided insights on the impact of environment and location on cancer disparities. Researchers shared thoughts about societal poverty and policy issues, biologic responses, genetic predisposition, and the mechanistic influence of lifestyle factors on cancer incidence and mortality. CONCLUSION: Listening sessions and interviews provided insight into contributors to cancer disparities, barriers to improving outcomes, and opportunities to improve health. The unique perspectives of each group underscored the need for multisector teams to tackle the complex issue of cancer disparities.


Subject(s)
Breast Neoplasms/mortality , Healthcare Disparities , Lung Neoplasms/mortality , Demography , Female , Health Services Accessibility , Humans , Male , Qualitative Research , Wisconsin/epidemiology
18.
Am J Mens Health ; 14(2): 1557988320913387, 2020.
Article in English | MEDLINE | ID: mdl-32202194

ABSTRACT

The aim of this study was to assess outcomes from a multilevel social network intervention to promote the health of Black men. Through a community-academic collaboration and using a participatory research approach, we implemented the intervention over 4 years in a 110-block area of an urban neighborhood. The project aimed to implement a neighborhood peer outreach and leadership network to strengthen social support of Black men and increase community and family engagement. Intervention activities included three 12-month intergenerational peer support groups (N = 46), a door-to-door outreach campaign (N = 186), media and communication efforts, and a community partner network. Primary outcomes for the peer support groups were measured using a pretest/posttest cohort design and included social support, perceived stress, social capital, and global self-esteem. Primary outcomes for the door-to-door outreach campaign were measured using a repeated cross-sectional design and included a sense of community, neighborhood social interaction, perceived neighborhood control, and self-rated health status. Significant findings from the peer support groups included an increase in social support overall (p = .027), driven by improvements in guidance, reliable alliance, and reassurance of worth; and an improvement in perceived stress (p = .047). Significant findings from the door-to-door outreach campaign included increases in neighborhood social interaction (p < .0001) and perceived neighborhood control (p = .036). This project provides evidence that a participatory approach to planning and delivering a health promotion intervention aimed at creating positive social spaces and enhancing social connections can result in significant outcomes and successful engagement of Black men.


Subject(s)
Black or African American/psychology , Community-Based Participatory Research , Social Networking , Social Support , Adolescent , Adult , Cross-Sectional Studies , Humans , Male , Middle Aged , Peer Group , Surveys and Questionnaires , Young Adult
19.
Nano Lett ; 20(1): 478-495, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31789044

ABSTRACT

Microglia-mediated neuroinflammation is one of the most significant features in a variety of central nervous system (CNS) disorders such as traumatic brain injury, stroke, and many neurodegenerative diseases. Microglia become polarized upon stimulation. The two extremes of the polarization are the neuron-destructive proinflammatory M1-like and the neuron-regenerative M2-like phenotypes. Thus, manipulating microglial polarization toward the M2 phenotype is a promising therapeutic approach for CNS repair and regeneration. It has been reported that nanoparticles are potential tools for regulating microglial polarization. Gold nanoclusters (AuNCs) could penetrate the blood-brain barrier and have neuroprotective effects, suggesting the possibility of utilizing AuNCs to regulate microglial polarization and improve neuronal regeneration in CNS. In the current study, AuNCs functionalized with dihydrolipoic acid (DHLA-AuNCs), an antioxidant with demonstrated neuroprotective roles, were prepared, and their effects on polarization of a microglial cell line (BV2) were examined. DHLA-AuNCs effectively suppressed proinflammatory processes in BV2 cells by inducing polarization toward the M2-like phenotype. This was associated with a decrease in reactive oxygen species and reduced NF-kB signaling and an improvement in cell survival coupled with enhanced autophagy and inhibited apoptosis. Conditioned medium from DHLA-AuNC-treated BV2 cells was able to enhance neurogenesis in both the neuronal cell line N2a and in an ex vivo brain slice stroke model. The direct treatment of brain slices with DHLA-AuNCs also ameliorated stroke-related tissue injury and reduced astrocyte activation (astrogliosis). This study suggests that by regulating neuroinflammation to improve neuronal regeneration, DHLA-AuNCs could be a potential therapeutic agent in CNS disorders.


Subject(s)
Cell Polarity/drug effects , Gold , Metal Nanoparticles/chemistry , Microglia/metabolism , Neurogenesis/drug effects , Neurons/metabolism , Thioctic Acid/analogs & derivatives , Animals , Cell Line, Tumor , Gold/chemistry , Gold/pharmacology , Mice , Thioctic Acid/chemistry , Thioctic Acid/pharmacology
20.
Metallomics ; 11(5): 959-967, 2019 05 22.
Article in English | MEDLINE | ID: mdl-30888356

ABSTRACT

Manganese is an essential metal that is required for a wide range of biological functions. Ferroportin (FPN), the only known cellular exporter of iron, has also been proposed to play a role in manganese export, but this relationship is incompletely understood. To investigate this in more detail in vivo, we examined the relative distributions of manganese and iron in TMPRSS6 deficient mice, which are characterized by constitutively high expression of the iron regulatory hormone hepcidin and, consequently, very low FPN levels in their tissues. Tmprss6-/- mice showed frank iron deficiency and reduced iron levels in most tissues, consistent with FPN playing an important role in the distribution of this metal, but manganese levels were largely unaffected. Associated studies using intestine-specific FPN knockout mice showed that loss of FPN significantly reduced the dietary absorption of iron, but had no effect on manganese intake. Taken together, our data suggest that FPN does not play a major role in Mn transport in vivo. They do not exclude a minor role for FPN in manganese homeostasis, nor the possibility that the transporter may be relevant at high Mn levels, but at physiological levels of this metal, other transport proteins appear to be more important.


Subject(s)
Cation Transport Proteins/metabolism , Hepcidins/metabolism , Homeostasis , Manganese/metabolism , Animals , Gene Expression Regulation , Hepcidins/genetics , Iron/metabolism , Manganese/blood , Membrane Proteins/deficiency , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Organ Specificity , Serine Endopeptidases/deficiency , Serine Endopeptidases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...