Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Glia ; 71(6): 1429-1450, 2023 06.
Article in English | MEDLINE | ID: mdl-36794545

ABSTRACT

Neonatal stroke is common and causes life-long motor and cognitive sequelae. Because neonates with stroke are not diagnosed until days-months after the injury, chronic targets for repair are needed. We evaluated oligodendrocyte maturity and myelination and assessed oligodendrocyte gene expression changes using single cell RNA sequencing (scRNA seq) at chronic timepoints in a mouse model of neonatal arterial ischemic stroke. Mice underwent 60 min of transient right middle cerebral artery occlusion (MCAO) on postnatal day 10 (p10) and received 5-ethynyl-2'-deoxyuridine (EdU) on post-MCAO days 3-7 to label dividing cells. Animals were sacrificed 14 and 28-30 days post-MCAO for immunohistochemistry and electron microscopy. Oligodendrocytes were isolated from striatum 14 days post-MCAO for scRNA seq and differential gene expression analysis. The density of Olig2+ EdU+ cells was significantly increased in ipsilateral striatum 14 days post-MCAO and the majority of oligodendrocytes were immature. Density of Olig2+ EdU+ cells declined significantly between 14 and 28 days post-MCAO without a concurrent increase in mature Olig2+ EdU+ cells. By 28 days post-MCAO there were significantly fewer myelinated axons in ipsilateral striatum. scRNA seq identified a cluster of "disease associated oligodendrocytes (DOLs)" specific to the ischemic striatum, with increased expression of MHC class I genes. Gene ontology analysis suggested decreased enrichment of pathways involved in myelin production in the reactive cluster. Oligodendrocytes proliferate 3-7 days post-MCAO and persist at 14 days, but fail to mature by 28 days. MCAO induces a subset of oligodendrocytes with reactive phenotype, which may be a therapeutic target to promote white matter repair.


Subject(s)
Infarction, Middle Cerebral Artery , Stroke , Mice , Animals , Infarction, Middle Cerebral Artery/complications , Animals, Newborn , Stroke/complications , Oligodendroglia , Myelin Sheath
2.
Dev Neurosci ; : 1-16, 2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30861520

ABSTRACT

The incidence of stroke in children is 2.4 per 100,000 person-years and results in long-term motor and cognitive disability. In ischemic stroke, white matter (WM) is frequently injured, but is relatively understudied compared to grey matter injury. Previous research suggests that the cellular response to WM ischemic injury is different at different ages. Little is known about whether WM repair mechanisms differ in children and adults. We utilized a model of focal ischemic WM injury to determine the oligodendrocyte (OL) response to focal WM ischemic injury in juvenile and adult mice. Methods: Juvenile (21-25 days of age) versus adult (2-3 months of age) mice underwent stereotaxic injection of the potent vasoconstrictor N5-(1-iminoethyhl)-L-ornithine (L-NIO) into the lateral corpus callosum (CC). Animals were sacrificed on postoperative day 3 (acute) or 21 (chronic). Cell birth-dating was performed acutely after WM stroke with 5-ethynyl-2-deoxyuridine (EdU) injected intraperitoneally. Immunohistochemistry was performed, as well as stereology, to measure injury volume. The acute oligodendrocyte progenitor cell (OPC) proliferation and the chronic OL cell fate were determined with immunohistochemistry. Compound action potentials were measured in the CC at acute and chronic time points. Results: Acutely WM injury volume was smaller in juveniles. There was significantly greater OPC proliferation in juvenile animals (acute) compared to adults, but newly born OLs did not survive and mature into myelinating cells at chronic time points. In addition, juveniles did not have improved histological or functional recovery when compared to adults. Protecting newly born OPCs is a potential therapeutic target in children with ischemic stroke.

SELECTION OF CITATIONS
SEARCH DETAIL
...