Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 73(13): 2836-42, 2001 Jul 01.
Article in English | MEDLINE | ID: mdl-11467524

ABSTRACT

A new method for proteolytic stable isotope labeling is introduced to provide quantitative and concurrent comparisons between individual proteins from two entire proteome pools or their subfractions. Two 18O atoms are incorporated universally into the carboxyl termini of all tryptic peptides during the proteolytic cleavage of all proteins in the first pool. Proteins in the second pool are cleaved analogously with the carboxyl termini of the resulting peptides containing two 16O atoms (i.e., no labeling). The two peptide mixtures are pooled for fractionation and separation, and the masses and isotope ratios of each peptide pair (differing by 4 Da) are measured by high-resolution mass spectrometry. Short sequences and/or accurate mass measurements combined with proteomics software tools allow the peptides to be related to the precursor proteins from which they are derived. Relative signal intensities of paired peptides quantify the expression levels of their precursor proteins from proteome pools to be compared, using an equation described in the paper. Observation of individual (unpaired) peptides is mainly interpreted as differential modification or sequence variation for the protein from the respective proteome pool. The method is evaluated here in a comparison of virion proteins for two serotypes (Ad5 and Ad2) of adenovirus, taking advantage of information already available about protein sequences and concentrations. In general, proteolytic 18O labeling enables a shotgun approach for proteomic studies with quantitation capability and is proposed as a useful tool for comparative proteomic studies of very complex protein mixtures.


Subject(s)
Adenoviridae/genetics , Proteome , Adenoviridae/classification , Amino Acid Sequence , Cell Line , Fourier Analysis , Hydrolysis , Molecular Sequence Data , Oxygen Isotopes , Peptide Mapping , Species Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Viral Proteins/chemistry
2.
Anal Chem ; 73(7): 1544-8, 2001 Apr 01.
Article in English | MEDLINE | ID: mdl-11321307

ABSTRACT

Membrane glycoproteins were shown to be useful biomarkers of enveloped viruses using on-target deglycosylation and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Sindbis virus, the prototype alpha-virus, was used as a model system. The glycoproteins and the capsid protein of the Sindbis virus were successfully detected by MALDI-TOF MS using two solvent systems. One of them is 0.5% n-octyl glucoside/0.5% trifluoroacetic acid. The two components of this solvent acted synergistically on the virus to help release and solubilize the structural proteins. The other is 70% acetonitrile/30% formic acid. This solvent solubilized the integral membrane glycoproteins very effectively even after serious aggregation. On-target deglycosylation was performed to confirm the detection of the glycoprotein peak and to produce protein moieties that can be used as biomarkers. After a simple and fast incubation using peptide-N-glycosidase F on target, sequential mass shifts were observed, which proved that the proteins detected at 51 000 Da have N-linked carbohydrate moieties at two sites. Observation of this mass shift could provide confirmatory evidence for viral identification.


Subject(s)
Membrane Glycoproteins/analysis , Sindbis Virus/chemistry , Viral Envelope Proteins/analysis , Animals , Cell Line , Chlorocebus aethiops , Detergents , Glucosides , Glycosylation , Solubility , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Trifluoroacetic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...