Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cortex ; 175: 1-11, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691922

ABSTRACT

Studies have reported substantial variability in emotion recognition ability (ERA) - an important social skill - but possible neural underpinnings for such individual differences are not well understood. This functional magnetic resonance imaging (fMRI) study investigated neural responses during emotion recognition in young adults (N = 49) who were selected for inclusion based on their performance (high or low) during previous testing of ERA. Participants were asked to judge brief video recordings in a forced-choice emotion recognition task, wherein stimuli were presented in visual, auditory and multimodal (audiovisual) blocks. Emotion recognition rates during brain scanning confirmed that individuals with high (vs low) ERA received higher accuracy for all presentation blocks. fMRI-analyses focused on key regions of interest (ROIs) involved in the processing of multimodal emotion expressions, based on previous meta-analyses. In neural response to emotional stimuli contrasted with neutral stimuli, individuals with high (vs low) ERA showed higher activation in the following ROIs during the multimodal condition: right middle superior temporal gyrus (mSTG), right posterior superior temporal sulcus (PSTS), and right inferior frontal cortex (IFC). Overall, results suggest that individual variability in ERA may be reflected across several stages of decisional processing, including extraction (mSTG), integration (PSTS) and evaluation (IFC) of emotional information.


Subject(s)
Brain Mapping , Emotions , Individuality , Magnetic Resonance Imaging , Recognition, Psychology , Humans , Male , Female , Emotions/physiology , Young Adult , Adult , Recognition, Psychology/physiology , Brain/physiology , Brain/diagnostic imaging , Facial Expression , Photic Stimulation/methods , Facial Recognition/physiology
2.
Sci Rep ; 10(1): 5227, 2020 03 23.
Article in English | MEDLINE | ID: mdl-32251360

ABSTRACT

Cognitive aging creates major individual and societal burden, motivating search for treatment and preventive care strategies. Behavioural interventions can improve cognitive performance in older age, but effects are small. Basic research has implicated dopaminergic signalling in plasticity. We investigated whether supplementation with the dopamine-precursor L-dopa improves effects of cognitive training on performance. Sixty-three participants for this randomised, parallel-group, double-blind, placebo-controlled trial were recruited via newspaper advertisements. Inclusion criteria were: age of 65-75 years, Mini-Mental State Examination score >25, absence of serious medical conditions. Eligible subjects were randomly allocated to either receive 100/25 mg L-dopa/benserazide (n = 32) or placebo (n = 31) prior to each of twenty cognitive training sessions administered during a four-week period. Participants and staff were blinded to group assignment. Primary outcomes were latent variables of spatial and verbal fluid intelligence. Compared to the placebo group, subjects receiving L-dopa improved less in spatial intelligence (-0.267 SDs; 95%CI [-0.498, -0.036]; p = 0.024). Change in verbal intelligence did not significantly differ between the groups (-0.081 SDs, 95%CI [-0.242, 0.080]; p = 0.323). Subjects receiving L-dopa also progressed slower through the training and the groups displayed differential volumetric changes in the midbrain. No statistically significant differences were found for the secondary cognitive outcomes. Adverse events occurred for 10 (31%) and 7 (23%) participants in the active and control groups, correspondingly. The results speak against early pharmacological interventions in older healthy adults to improve broader cognitive functions by targeting the dopaminergic system and provide no support for learning-enhancing properties of L-dopa supplements in the healthy elderly. The findings warrant closer investigation about the cognitive effects of early dopamine-replacement therapy in neurological disorders. This trial was preregistered at the European Clinical Trial Registry, EudraCT#2016-000891-54 (2016-10-05).


Subject(s)
Brain/drug effects , Brain/diagnostic imaging , Cognition/drug effects , Learning/drug effects , Levodopa/administration & dosage , Aged , Body Mass Index , Dopamine Agents/administration & dosage , Dopamine Agents/adverse effects , Dopamine Agents/blood , Double-Blind Method , Female , Homovanillic Acid/blood , Humans , Levodopa/adverse effects , Levodopa/blood , Magnetic Resonance Imaging , Male , Memory, Short-Term/drug effects , Placebos
SELECTION OF CITATIONS
SEARCH DETAIL
...