Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Transl Med Commun ; 7(1): 3, 2022.
Article in English | MEDLINE | ID: mdl-35261923

ABSTRACT

Background: Dysregulation of antiviral immunity has been implicated in the progression of acute respiratory syndrome coronavirus 2 infection into severe cases of coronavirus disease of 2019 (COVID-19). Imbalances in the inflammatory response drive the overabundant production of pro-inflammatory cytokines and chemokines. The low molecular weight fraction of 5% human serum albumin commercial preparation (AMP5A) is a novel biologic drug currently under clinical investigation for the treatment of osteoarthritis and the hyperinflammatory response associated with COVID-19. This study aims to elucidate AMP5A effects following the activation of immune cells with agonists of Toll-like receptor (TLR) 7 and/or 8, which detect ssRNA viral sequences. Methods: CXCL10 ELISAs were used to evaluate the dynamics of myeloid cells activated with CL075 and CL307, agonists of TLR7/8 and TLR7, respectively. In addition, enrichment analysis of gene sets generated by ELISA arrays was utilized to gain insight into the biologic processes underlying the identified differentially expressed cytokine profiles. Finally, relative potency (REP) was employed to confirm the involvement of mechanisms of action paramount to AMP5A activity. Results: AMP5A inhibits the release of CXCL10 from both CL075- and CL307-activated PMA-differentiated THP-1 and peripheral blood mononuclear cells. Furthermore, AMP5A suppresses a distinct set of pro-inflammatory cytokines (including IL-1ß, IL-6, IL-12, and CXCL10) associated with COVID-19 and pro-inflammatory NF-κB activation. REP experiments using antagonists specific for the immunomodulatory transcription factors, peroxisome proliferator-activated receptor γ, and aryl hydrocarbon receptor, also indicate that these pathways are involved in the ability of AMP5A to inhibit CXCL10 release. Conclusion: Due to the biphasic course of COVID-19, therapeutic approaches that augment antiviral immunity may be more beneficial early in infection, whereas later interventions should focus on inflammation suppression. In this study, we show that AMP5A inhibits TLR 7/8 signaling in myeloid cells, resulting in a decrease in inflammatory mediators associated with hyperinflammation and autoimmunity. Furthermore, data demonstrating that AMP5A activates immunomodulatory transcription factors found to be protective in lung disease is provided. These findings suggest that the modes and mechanisms of action of AMP5A are well suited to treat conditions involving dysregulated TLR 7/8 activation.

2.
J Transl Med ; 18(1): 452, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33256749

ABSTRACT

BACKGROUND: Dysregulation of transcription and cytokine expression has been implicated in the pathogenesis of a variety inflammatory diseases. The resulting imbalance between inflammatory and resolving transcriptional programs can cause an overabundance of pro-inflammatory, classically activated macrophage type 1 (M1) and/or helper T cell type 1 (Th1) products, such as IFNγ, TNFα, IL1-ß, and IL12, that prevent immune switching to resolution and healing. The low molecular weight fraction of human serum albumin (LMWF5A) is a novel biologic drug that is currently under clinical investigation for the treatment of osteoarthritis and the hyper-inflammatory response associated with COVID-19. This study aims to elucidate transcriptional mechanisms of action involved with the ability of LMWF5A to reduce pro-inflammatory cytokine release. METHODS: ELISA arrays were used to identify cytokines and chemokines influenced by LMWF5A treatment of LPS-stimulated peripheral blood mononuclear cells (PBMC). The resulting profiles were analyzed by gene enrichment to gain mechanistic insight into the biologic processes and transcription factors (TFs) underlying the identified differentially expressed cytokines. DNA-binding ELISAs, luciferase reporter assays, and TNFα or IL-1ß relative potency were then employed to confirm the involvement of enriched pathways and TFs. RESULTS: LMWF5A was found to significantly inhibit a distinct set of pro-inflammatory cytokines (TNFα, IL-1ß, IL-12, CXCL9, CXCL10, and CXCL11) associated with pro-inflammatory M1/Th1 immune profiles. Gene enrichment analysis also suggests these cytokines are, in part, regulated by NF-κB and STAT transcription factors. Data from DNA-binding and reporter assays support this with LMWF5A inhibition of STAT1α DNA-binding activity as well as a reduction in overall NF-κB-driven luciferase expression. Experiments using antagonists specific for the immunomodulatory and NF-κB/STAT-repressing transcription factors, peroxisome proliferator-activated receptor (PPAR)γ and aryl hydrocarbon receptor (AhR), indicate these pathways are involved in the LMWF5A mechanisms of action by reducing LMWF5A drug potency as measured by TNFα and IL-1ß release. CONCLUSION: In this report, we provide evidence that LMWF5A reduces pro-inflammatory cytokine release by activating the immunoregulatory transcription factors PPARγ and AhR. In addition, our data indicate that LMWF5A suppresses NF-κB and STAT1α pro-inflammatory pathways. This suggests that LMWF5A acts through these mechanisms to decrease pro-inflammatory transcription factor activity and subsequent inflammatory cytokine production.


Subject(s)
Cytokines/metabolism , Inflammation/prevention & control , Leukocytes, Mononuclear/drug effects , Serum Albumin, Human/pharmacology , Anti-Inflammatory Agents/pharmacology , COVID-19/immunology , COVID-19/pathology , Cells, Cultured , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation Mediators/metabolism , Interferon-Stimulated Gene Factor 3/metabolism , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides , Lymphocyte Activation/drug effects , Molecular Weight , NF-kappa B/metabolism , Serum Albumin, Human/chemistry , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/immunology , Transcription Factors/metabolism , COVID-19 Drug Treatment
3.
Patient Saf Surg ; 14: 21, 2020.
Article in English | MEDLINE | ID: mdl-32431755

ABSTRACT

BACKGROUND: A common complication of viral pulmonary infections, such as in the ongoing COVID-19 pandemic, is a phenomenon described as a "cytokine storm". While poorly defined, this hyperinflammatory response results in diffuse alveolar damage. The low molecular weight fraction of commercial human serum albumin (LMWF5A), a novel biologic in development for osteoarthritis, demonstrates beneficial in vitro immunomodulatory effects complimentary to addressing inflammation, thus, we hypothesize that LMWF5A could improve the clinical outcomes of COVID-19 by attenuating hyperinflammation and the potential development of a cytokine storm. PRESENTATION OF THE HYPOTHESIS: A variety of human in vitro immune models indicate that LMWF5A reduces the production of pro-inflammatory cytokines implicated in cytokine storm associated with COVID-19. Furthermore, evidence suggests LMWF5A also promotes the production of mediators required for resolving inflammation and enhances the barrier function of endothelial cultures. TESTING THE HYPOTHESIS: A randomized controlled trial, to evaluate the safety and efficacy of nebulized LMWF5A in adults with Acute Respiratory Distress Syndrome (ARDS) secondary to COVID-19 infection, was developed and is currently under review by the Food and Drug Administration. IMPLICATIONS OF HYPOTHESIS: If successful, this therapy may attenuate the cytokine storm observed in these patients and potentially reduce mortality, increase ventilation free days, improve oxygenation parameters and consequently lessen the burden on patients and the intensive care unit. CONCLUSIONS: In conclusion, in vitro findings suggest that the immunomodulatory effects of LMWF5A make it a viable candidate for treating cytokine storm and restoring homeostasis to the immune response in COVID-19.

4.
Curr Rheumatol Rev ; 15(3): 189-200, 2019.
Article in English | MEDLINE | ID: mdl-30451114

ABSTRACT

The low molecular weight fraction of commercial human serum albumin (LMWF5A) has been shown to successfully relieve pain and inflammation in severe osteoarthritis of the knee (OAK). LMWF5A contains at least three active components that could account for these antiinflammatory and analgesic effects. We summarize in vitro experiments in bone marrow-derived mesenchymal stem cells, monocytic cell lines, chondrocytes, peripheral blood mononuclear cells, fibroblast-like synoviocytes, and endothelial cells on the biochemistry of anti-inflammatory changes induced by LMWF5A. We then look at four of the major pathways that cut across cell-type considerations to examine which biochemical reactions are affected by mTOR, COX-2, CD36, and AhR pathways. All three components show anti-inflammatory activities in at least some of the cell types. The in vitro experiments show that the effects of LMWF5A in chondrocytes and bone marrow- derived stem cells in particular, coupled with recent data from previous clinical trials of single and multiple injections of LMWF5A into OAK patients demonstrated improvements in pain, function, and Patient Global Assessment (PGA), as well as high responder rates that could be attributed to the multiple mechanism of action (MOA) pathways are summarized here. In vitro and in vivo data are highly suggestive of LMWF5A being a disease-modifying drug for OAK.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Osteoarthritis, Knee , Serum Albumin, Human/pharmacology , Analgesics/pharmacology , Humans , Osteoarthritis, Knee/immunology , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/physiopathology
5.
Clin Exp Rheumatol ; 36(5): 891-895, 2018.
Article in English | MEDLINE | ID: mdl-30272545

ABSTRACT

OBJECTIVES: Traumatic joint injury induces chondrocyte dysfunction and progressive breakdown of articular cartilage, leading to post-traumatic osteoarthritis (PTOA). In this condition, dysfunctional fibroblast-like chondrocytes (FLCs) no longer express proteins required for cartilage maintenance, such as SOX9 and collagen-type II (COL2). Interleukin-6 (IL-6) has been demonstrated to downregulate expression of these two critical proteins in chondrocytes, and increased IL-6 levels have been measured in patients with PTOA. The <5kDa fraction of human serum albumin (LMWF5A) has been suggested to modulate this pathway, as decreased levels of IL-6 are secreted by immunostimulated LMWF5A-treated macrophages. Our objective was to determine whether LMWF5A induces an in vitro model of FLCs to redifferentiate into functional chondrocytes. METHODS: SOX9 and COL2 were monitored via western blot, and COL2 was detected with immunofluorescence. Aggrecan and IL-6 were quantified by ELISA. Glycosaminoglycan (GAG) levels were quantified with alcian blue. RESULTS: We found that LMWF5A significantly increases the principal cartilage transcription factor SOX9 and the SOX9 target protein COL2 in monolayer-cultured FLCs. Multiple LMWF5A treatments of 3-D pellet FLC cultures over 2wks resulted in a significant decrease in IL-6 and significant increases in the major players of articular cartilage mechanics, aggrecan and highly-sulfated GAGs. CONCLUSIONS: These data support the hypothesis and clinical outcomes of two phase III clinical trials that LMWF5A-treatment induces chondrogenesis and supports functional cartilage. We propose that LMWF5A could maintain articular cartilage integrity in all joints following traumatic injury.


Subject(s)
Cell Transdifferentiation/drug effects , Chondrocytes/drug effects , Chondrogenesis/drug effects , Fibroblasts/drug effects , Osteoarthritis/drug therapy , Serum Albumin, Human/pharmacology , Aggrecans/metabolism , Cells, Cultured , Chondrocytes/metabolism , Chondrocytes/pathology , Collagen Type II/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Glycosaminoglycans/metabolism , Humans , Interleukin-6/metabolism , Molecular Weight , Osteoarthritis/metabolism , Osteoarthritis/pathology , Phenotype , SOX9 Transcription Factor/metabolism
6.
Biochem Biophys Res Commun ; 478(4): 1780-5, 2016 09 30.
Article in English | MEDLINE | ID: mdl-27613088

ABSTRACT

It has long been appreciated that the microtubule network plays a critical role in endothelial cell function. Chemical inhibition of tubulin polymerization has been shown to drastically increases endothelial permeability via interactions with the actin cytoskeleton. Conversely, stabilization of microtubules significantly decreases vascular permeability. The purpose of this investigation was to determine if the low molecular weight fraction of commercial 5% human serum albumin (LMWF5A) alters endothelial cell cytoskeletal dynamics and function. To investigate this, human retinal endothelial cells (HREC) were treated with LMWF5A and the acetylation of α-tubulin was determined by immunofluorescent staining and immunoblotting. In addition, permeability assays were performed to evaluate functional changes. We found that HREC treated with LMWF5A exhibit a rapid increase in the amount and distribution of acetylated α-tubulin. This was accompanied by a reduction in macromolecular permeability. Calcium depletion and inhibition of PI3-kinase reduced LMWF5A-induced acetylation while p38 MAPK inhibition potentiated this effect. These findings suggest that LMWF5A mediates changes in the microtubule network and reduces transcytosis in HREC.


Subject(s)
Endothelial Cells/drug effects , Serum Albumin/pharmacology , Transcytosis/drug effects , Tubulin/metabolism , Acetylation/drug effects , Blotting, Western , Calcium/metabolism , Capillary Permeability/drug effects , Cell Membrane Permeability/drug effects , Cells, Cultured , Chromones/pharmacology , Endothelial Cells/metabolism , Humans , Imidazoles/pharmacology , Microscopy, Fluorescence , Molecular Weight , Morpholines/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Pyridines/pharmacology , Retina/cytology , Serum Albumin/chemistry , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism
7.
Biochem Biophys Res Commun ; 473(4): 1328-1333, 2016 05 13.
Article in English | MEDLINE | ID: mdl-27095392

ABSTRACT

Activation of the innate immune system involves a series of events designed to counteract the initial insult followed by the clearance of debris and promotion of healing. Aberrant regulation can lead to systemic inflammatory response syndrome, multiple organ failure, and chronic inflammation. A better understanding of the innate immune response may help manage complications while allowing for proper immune progression. In this study, the ability of several classes of anti-inflammatory drugs to affect LPS-induced cytokine and prostaglandin release from peripheral blood mononuclear cells (PBMC) was evaluated. PBMC were cultured in the presence of dexamethasone (DEX), ibuprofen (IBU), and the low molecular weight fraction of 5% albumin (LMWF5A) followed by stimulation with LPS. After 24 h, TNFα, PGE2, and 15d-PGJ2 release was determined by ELISA. Distinct immunomodulation patterns emerged following LPS stimulation of PBMC in the presence of said compounds. DEX, a steroid with strong immunosuppressive properties, reduced TNFα, PGE2, and 15d-PGJ2 release. IBU caused significant reduction in prostaglandin release while TNFα release was unchanged. An emerging biologic with known anti-inflammatory properties, LMWF5A, significantly reduced TNFα release while enhancing PGE2 and 15d-PGJ2 release. Incubating LMWF5A together with IBU negated this observed increased prostaglandin release without affecting the suppression of TNFα release. Additionally, LMWF5A caused an increase in COX-2 transcription and translation. LMWF5A exhibited a unique immune modulation pattern in PBMC, disparate from steroid or NSAID administration. This enhancement of prostaglandin release (specifically 15d-PGJ2), in conjunction with a decrease in TNFα release, suggests a switch that favors resolution and decreased inflammation.


Subject(s)
Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Prostaglandin D2/analogs & derivatives , Serum Albumin/administration & dosage , Serum Albumin/chemistry , Cells, Cultured , Cytokines/immunology , Humans , Lipopolysaccharides/pharmacology , Molecular Weight , Prostaglandin D2/biosynthesis , Prostaglandin D2/immunology , Serum Albumin/immunology , Up-Regulation/drug effects , Up-Regulation/immunology
8.
Biochem Biophys Rep ; 8: 68-74, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28955943

ABSTRACT

BACKGROUND: The ability to decrease inflammation and promote healing is important in the intervention and management of a variety of disease states, including osteoarthritis of the knee (OAK). Even though cyclooxygenase 2 (COX2) has an established pro-inflammatory role, evidence suggests it is also critical to the resolution that occurs after the initial activation phase of the immune response. In this study, we investigated the effects of the low molecular weight fraction of 5% human serum albumin (LMWF-5A), an agent that has proven to decrease pain and improve function in OAK patients after intra-articular injection, on the expression of COX2 and its downstream products, prostaglandins (PGs). METHODS: Fibroblast-like synoviocytes from the synovial membrane of OAK patients were treated with LMWF-5A or saline as a control with or without the addition of interleukin-1ß (IL-1ß) or tumor necrosis factor α (TNFα) to elicit an inflammatory response. Cells were harvested for RNA and protein at 2, 4, 8, 12, and 24 h, and media was collected at 24 h for analysis of secreted products. COX2 mRNA expression was determined by qPCR, and COX2 protein expression was determined by western blot analysis. Levels of prostaglandin E2 (PGE2) and prostaglandin D2 (PGD2) in the media were quantified by competitive ELISA. RESULTS: In the presence of either IL-1ß or TNFα, LMWF-5A increased the expression of both COX2 mRNA and protein, and this increase was significant compared to that observed with IL-1ß- or TNFα-stimulated, saline-treated cells. Downstream of COX2, the levels of PGE2 were increased only in TNFα-stimulated, LMWF-5A-treated cells; however, in both IL-1ß- and TNFα-stimulated cells, LMWF-5A increased the release of the anti-inflammatory prostaglandin PGD2. CONCLUSION: LMWF-5A appears to trigger increased anti-inflammatory PG signaling, and this may be a primary component of its therapeutic mode of action in the treatment of OAK.

9.
J Biol Chem ; 283(21): 14792-800, 2008 May 23.
Article in English | MEDLINE | ID: mdl-18367448

ABSTRACT

Members of the tristetraprolin family of CCCH tandem zinc finger proteins bind to AU-rich elements in certain cellular mRNAs, leading to their deadenylation and destabilization. Studies in knock-out mice demonstrated roles for three of the family members, tristetraprolin, ZFP36L1, and ZFP36L2, in inflammation, chorioallantoic fusion, and early embryonic development, respectively. However, little is known about a recently discovered placenta-specific tristetraprolin family member, ZFP36L3. Tristetraprolin, ZFP36L1, and ZFP36L2 have been shown to shuttle between the nucleus and cytoplasm, using typical hydrophobic amino acid-rich nuclear export sequences, and nuclear localization sequences located within the tandem zinc finger domain. In contrast, we previously showed that green fluorescent protein-labeled ZFP36L3, expressed in HEK 293 cells, remained cytosolic, even in the presence of the nuclear export blocker leptomycin B. We show here that the conserved tandem zinc finger domain contains an active nuclear localization signal. However, the sequence corresponding to the nuclear export signal in the other family members was nonfunctional, and thus did not contribute to the cytosolic localization. The unique C-terminal repeat domain could override the activity of the nuclear localization sequence, preventing the import of ZFP36L3 into the nucleus. Immunostaining of mouse placenta demonstrated that ZFP36L3 was located only in the cytoplasm of trophoblast cells. Thus, in contrast to the other mammalian members of this protein family, ZFP36L3 is a "full-time" cytosolic protein, rather than a nucleocytoplasmic shuttling protein. The significance of this difference in subcellular localization to the physiology of placental trophoblast cells, where ZFP36L3 is selectively expressed, remains to be determined.


Subject(s)
Cytosol/metabolism , Placenta/chemistry , Placenta/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Tristetraprolin/chemistry , Tristetraprolin/metabolism , Amino Acid Motifs , Animals , Cell Line , Conserved Sequence , Female , Humans , Mice , Molecular Sequence Data , Nuclear Localization Signals , RNA, Messenger/genetics , RNA-Binding Proteins/classification , RNA-Binding Proteins/genetics , Sequence Alignment , Tristetraprolin/classification , Tristetraprolin/genetics
10.
Chem Res Toxicol ; 17(8): 1057-63, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15310237

ABSTRACT

Diepoxybutane, diepoxyoctane, and mechlorethamine are cytotoxic agents that induce interstrand cross-links between the N7 positions of deoxyguanosine residues on opposite strands of the DNA duplex preferentially at 5'-GNC sequences. We have systematically varied the identity of either the base 5' to the cross-linked deoxyguanosine residues or the intervening base pair to determine flanking sequence effects on cross-linking efficiency. We used synthetic DNA oligomers containing four 5'-N(1)GN(2)C sites that varied either N(1) or N(2). Interstrand cross-links were purified through denaturing polyacrylamide gel electrophoresis and then subjected to piperidine cleavage. The amount of cleavage at each deoxyguanosine residue, representative of cross-linking efficiency at that site, was determined by sequencing gel analysis. Our data suggest that cross-linking efficiency varies with the identity of N(1) similarly (purines > pyrimidines) for diepoxybutane, diepoxyoctane, and mechlorethamine but that the effects of N(2) differ for the three compounds.


Subject(s)
Cross-Linking Reagents/chemistry , DNA/chemistry , Deoxyguanosine/chemistry , Epoxy Compounds/chemistry , Mechlorethamine/chemistry , Base Sequence , Electrophoresis , Epoxy Compounds/toxicity , Mechlorethamine/toxicity , Molecular Sequence Data , Oligonucleotides/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...