Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 14(8)2022 08 17.
Article in English | MEDLINE | ID: mdl-36016423

ABSTRACT

A safe and efficacious live-attenuated vaccine for porcine epidemic diarrhea virus (PEDV) is not commercially available in the United States yet. Two major PEDV strains are currently circulating in US swine: highly virulent non-S-INDEL strain and milder virulent S-INDEL strain. In this study, the safety and protective efficacy of a plaque-purified S-INDEL PEDV isolate formulated as a vaccine candidate was evaluated. Ten pregnant gilts were divided into three groups and orally inoculated at 79 days of gestation and then boosted at 100 days gestation (T01: n = 4, vaccination/challenge; T02: n = 4, non-vaccination/challenge; T03: n = 2, non-vaccination/non-challenge). None of the gilts had adverse clinical signs after vaccination. Only one T01 gilt (#5026) had viral replication and detectible viral RNA in feces. The same gilt had consistent levels of PEDV-specific IgG and IgA antibodies in serum and colostrum/milk. Farrowed piglets at 3 to 5 days of age from T01 and T02 gilts were orally challenged with 103 TCID50/pig of the virulent non-S-INDEL PEDV while T03 piglets were orally inoculated with virus-negative medium. T01 litters had overall lower mortality than T02 (T01 36.4% vs. T02 74.4%). Specifically, there was 0% litter mortality from T01 gilt 5026. Overall, it appears that vaccination of pregnant gilts with S-INDEL PEDV can passively protect piglets if there is virus replication and immune response induction in the pregnant gilts.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Viral Vaccines , Animals , Animals, Newborn , Antibodies, Viral , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Female , Porcine epidemic diarrhea virus/genetics , Pregnancy , Sus scrofa , Swine , Swine Diseases/epidemiology , United States , Vaccines, Attenuated
2.
BMC Vet Res ; 15(1): 168, 2019 May 24.
Article in English | MEDLINE | ID: mdl-31126297

ABSTRACT

BACKGROUND: Seneca Valley virus (SVV) has emerged in multiple countries in recent years. SVV infection can cause vesicular lesions clinically indistinguishable from those caused by other vesicular disease viruses, such as foot-and-mouth disease virus (FMDV), swine vesicular disease virus (SVDV), vesicular stomatitis virus (VSV), and vesicular exanthema of swine virus (VESV). Sensitive and specific RT-PCR assays for the SVV detection is necessary for differential diagnosis. Real-time RT-PCR (rRT-PCR) has been used for the detection of many RNA viruses. The insulated isothermal PCR (iiPCR) on a portable POCKIT™ device is user friendly for on-site pathogen detection. In the present study, SVV rRT-PCR and RT-iiPCR were developed and validated. RESULTS: Neither the SVV rRT-PCR nor the RT-iiPCR cross-reacted with any of the vesicular disease viruses (20 FMDV, two SVDV, six VSV, and two VESV strains), classical swine fever virus (four strains), and 15 other common swine viruses. Analytical sensitivities of the SVV rRT-PCR and RT-iiPCR were determined using serial dilutions of in vitro transcribed RNA as well as viral RNA extracted from a historical SVV isolate and a contemporary SVV isolate. Diagnostic performances were further evaluated using 125 swine samples by two approaches. First, nucleic acids were extracted from the 125 samples using the MagMAX™ kit and then tested by both RT-PCR methods. One sample was negative by the rRT-PCR but positive by the RT-iiPCR, resulting in a 99.20% agreement (124/125; 95% CI: 96.59-100%, κ = 0.98). Second, the 125 samples were tested by the taco™ mini extraction/RT-iiPCR and by the MagMAX™ extraction/rRT-PCR system in parallel. Two samples were positive by the MagMAX™/rRT-PCR system but negative by the taco™ mini/RT-iiPCR system, resulting in a 98.40% agreement (123/125; 95% CI: 95.39-100%, κ = 0.97). The two samples with discrepant results had relatively high CT values. CONCLUSIONS: The SVV rRT-PCR and RT-iiPCR developed in this study are very sensitive and specific and have comparable diagnostic performances for SVV RNA detection. The SVV rRT-PCR can be adopted for SVV detection in laboratories. The SVV RT-iiPCR in a simple field-deployable system could serve as a tool to help diagnose vesicular diseases in swine at points of need.


Subject(s)
Picornaviridae/isolation & purification , Real-Time Polymerase Chain Reaction/veterinary , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Swine Diseases/virology , Animals , Genetic Variation , Picornaviridae/genetics , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Sensitivity and Specificity , Swine , Swine Diseases/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...