Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22272768

ABSTRACT

Post-acute lung sequelae of COVID-19 are challenging many survivors across the world, yet the mechanisms behind are poorly understood. Our results delineate an inflammatory cascade of events occurring along disease progression within fibrovascular niches. It is initiated by endothelial dysfunction, followed by heme scavenging of CD163+ macrophages and production of CCL18. This chemokine synergizes with local CCL21 upregulation to influence the stromal composition favoring endothelial to mesenchymal transition. The local immune response is further modulated via recruitment of CCR7+ T cells into the expanding fibrovascular niche and imprinting an exhausted, T follicular helper-like phenotype in these cells. Eventually, this culminates in the formation of tertiary lymphoid structures, further perpetuating chronic inflammation. Thus, our work presents misdirected immune-stromal interaction mechanisms promoting a self-sustained and non-resolving local immune response that extends beyond active viral infection and leads to profound tissue repurposing and chronic inflammation.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21260803

ABSTRACT

ObjectivesPatients with autoimmune inflammatory rheumatic diseases receiving rituximab (RTX) therapy show substantially impaired anti-SARS-CoV-2 vaccine humoral but partly inducible cellular immune responses. However, the complex relationship between antigen-specific B and T cells and the level of B cell repopulation necessary to achieve anti-vaccine responses remain largely unknown. MethodsAntibody responses to SARS-CoV-2 vaccines and induction of antigen-specific B and CD4/CD8 T cell subsets were studied in 19 rheumatoid arthritis (RA) and ANCA-associated vasculitis (AAV) patients receiving RTX, 12 RA patients on other therapies and 30 healthy controls after SARS-CoV-2 vaccination with either mRNA or vector based vaccines. ResultsA minimum of 10 B cells/{micro}L in the peripheral circulation was necessary in RTX patients to mount seroconversion to anti-S1 IgG upon SARS-CoV-2 vaccination. RTX patients lacking IgG seroconversion showed reduced antigen-specific B cells, lower frequency of TfH-like cells as well as less activated CD4 and CD8 T cells compared to IgG seroconverted RTX patients. Functionally relevant B cell depletion resulted in impaired IFN{gamma} secretion by spike-specific CD4 T cells. In contrast, antigen-specific CD8 T cells were reduced in patients independently of IgG formation. ConclusionsPatients receiving rituximab with B cell numbers above 10 B cells/{micro}l were able to mount humoral and more robust cellular responses after SARS-CoV-2 vaccination that may permit optimization of vaccination in these patients. Mechanistically, the data emphasize the crucial role of co-stimulatory B cell functions for the proper induction of CD4 responses propagating vaccine-specific B and plasma cell differentiation.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21255550

ABSTRACT

Patients with kidney failure are at increased risk during the COVID-19 pandemic and effective vaccinations are needed. It is not known how efficient mRNA vaccines mount B and plasma cell responses in dialysis patients (DP) or kidney transplant recipients (KTR) compared to healthy controls (HC). We studied humoral and B cell responses of 25 HC, 44 DP and 40 KTR. Markedly impaired anti-BNT162b2 responses were identified among KTR and DP compared to 100% seroconversion in HC. In DP, the response was delayed (3-4 weeks after boost) and reduced with anti-S1 IgG positivity in 31 (70.5%) and anti-S1 IgA in 30 (68.2%) of 44, respectively. In contrast, KTR did not develop IgG response except one patient who had prior unrecognized infection and developed anti-S1 IgG. The majority of antigen-specific B cells (RBD+) were identified in the plasmablast or post-switch memory B cell compartments in HC, whereas these RBD+ B cells were enriched among pre-switch and naive B cells from DP and KTR. Single cell transcriptome and CITE-seq analyses found reduced frequencies of plasmablasts, TCF7+CD27+GZMK+ T cells and proliferating MKI67-expressing lymphocytes among KTR non-responders. Importantly, the frequency and absolute number of antigen-specific circulating plasmablasts in the whole cohort correlated with the Ig response, a characteristic not reported for other vaccinations. In conclusion, this data indicate that lack of T cell help related to immunosuppression results in impaired germinal center differentiation of B and plasma cell memory. There is an urgent need to improve vaccination protocols in patients after kidney transplantation or on chronic dialysis. One Sentence SummaryKidney transplant recipients and dialysis patients show a markedly diminished humoral response and impaired molecular B cell memory formation upon vaccination with BNT162b2.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20188169

ABSTRACT

Here we have analyzed the dynamics of the adaptive immune response triggered by SARS-CoV-2 in severely affected COVID-19 patients, as reflected by activated B cells egressing into the blood, at the single cell level. Early on, before seroconversion in response to SARS-CoV-2 spike protein, activated peripheral B cells displayed a type 1 interferon-induced gene expression signature. After seroconversion, activated B cells lost this signature, expressed IL-21- and TGF-{beta}-induced gene expression signatures, and mostly IgG1 and IgA1. In the sustained immune reaction of the COVID-19 patients, until day 59, activated peripheral B cells shifted to expression of IgA2, reflecting instruction by TGF-{beta}. Despite the continued generation of activated B cells, those cells were not found in the lungs of deceased COVID-19 patients, nor did the IgA2 bind to dominant antigens of SARS-CoV-2. In severe COVID-19, SARS-CoV-2 thus triggers a chronic immune reaction distracted from itself and instructed by TGF-{beta}.

SELECTION OF CITATIONS
SEARCH DETAIL
...