Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Exp Physiol ; 99(4): 688-700, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24443349

ABSTRACT

Respiratory muscle dysfunction documented in sleep apnoea patients is perhaps due to oxidative stress secondary to chronic intermittent hypoxia (CIH). We sought to explore the effects of different CIH protocols on respiratory muscle form and function in a rodent model. Adult male Wistar rats were exposed to CIH (n = 32) consisting of 90 s normoxia-90 s hypoxia (either 10 or 5% oxygen at the nadir; arterial O2 saturation ∼ 90 or 80%, respectively] for 8 h per day or to sham treatment (air-air, n = 32) for 1 or 2 weeks. Three additional groups of CIH-treated rats (5% O2 for 2 weeks) had free access to water containing N-acetyl cysteine (1% NAC, n = 8), tempol (1 mM, n = 8) or apocynin (2 mM, n = 8). Functional properties of the diaphragm muscle were examined ex vivo at 35 °C. The myosin heavy chain and sarco(endo)plasmic reticulum Ca(2+)-ATPase isoform distribution, succinate dehydrogenase and glyercol phosphate dehydrogenase enzyme activities, Na(+)-K(+)-ATPase pump content, concentration of thiobarbituric acid reactive substances, DNA oxidation and antioxidant capacity were determined. Chronic intermittent hypoxia (5% oxygen at the nadir; 2 weeks) decreased diaphragm muscle force and endurance. All three drugs reversed the deleterious effects of CIH on diaphragm endurance, but only NAC prevented CIH-induced diaphragm weakness. Chronic intermittent hypoxia increased diaphragm muscle myosin heavy chain 2B areal density and oxidized glutathione/reduced glutathione (GSSG/GSH) ratio. We conclude that CIH-induced diaphragm dysfunction is reactive oxygen species dependent. N-Acetyl cysteine was most effective in reversing CIH-induced effects on diaphragm. Our results suggest that respiratory muscle dysfunction in sleep apnoea may be the result of oxidative stress and, as such, antioxidant treatment could prove a useful adjunctive therapy for the disorder.


Subject(s)
Diaphragm/metabolism , Hypoxia/metabolism , Muscle Contraction , Muscle Fatigue , Oxidative Stress , Reactive Oxygen Species/metabolism , Animals , Antioxidants/pharmacology , Chronic Disease , Diaphragm/drug effects , Diaphragm/physiopathology , Disease Models, Animal , Glutathione/metabolism , Glycerolphosphate Dehydrogenase/metabolism , Hypoxia/physiopathology , Male , Muscle Contraction/drug effects , Muscle Fatigue/drug effects , Myosin Heavy Chains/metabolism , Oxidative Stress/drug effects , Rats, Wistar , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Succinate Dehydrogenase/metabolism , Time Factors
2.
J Histochem Cytochem ; 61(7): 487-99, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23640977

ABSTRACT

Respiratory muscle remodeling occurs in human sleep apnea--a common respiratory disorder characterized by chronic intermittent hypoxia (CIH) due to recurrent apnea during sleep. We sought to determine if CIH causes remodeling in rat sternohyoid (upper airway dilator) and diaphragm muscles. Adult male Wistar rats were exposed to CIH (n=8), consisting of 90 sec of hypoxia (5% at the nadir; SaO2 ~80%)/90 sec of normoxia, 8 hr per day, for 7 consecutive days. Sham animals (n=8) were exposed to alternating air/air cycles in parallel. The effect of CIH on myosin heavy-chain (MHC) isoform (1, 2a, 2x, 2b) distribution, sarcoplasmic reticulum calcium ATPase (SERCA) isoform distribution, succinate dehydrogenase activity, glycerol phosphate dehydrogenase activity, and Na⁺/K⁺ ATPase pump content was determined. Sternohyoid muscle structure was unaffected by CIH treatment. CIH did not alter oxidative/glycolytic capacity or the Na⁺/K⁺-ATPase pump content of the diaphragm. CIH significantly increased the areal density of MHC 2b fibers in the rat diaphragm, and this was associated with a shift in SERCA proteins from SERCA2 to SERCA1. We conclude that CIH causes a slow-to-fast fiber transition in the rat diaphragm after just 7 days of treatment. Respiratory muscle functional remodeling may drive aberrant functional plasticity such as decreased muscle endurance, which is a feature of human sleep apnea.


Subject(s)
Diaphragm/metabolism , Hypoxia/metabolism , Muscle, Skeletal/metabolism , Animals , Disease Models, Animal , Glycerolphosphate Dehydrogenase/metabolism , Hypoxia/enzymology , Hypoxia/pathology , Male , Muscle, Skeletal/enzymology , Muscle, Skeletal/pathology , Myosin Heavy Chains/metabolism , Rats , Rats, Wistar , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Succinate Dehydrogenase/metabolism , Time Factors
3.
J Strength Cond Res ; 22(4): 1136-46, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18545196

ABSTRACT

Eccentric exercise often produces severe muscle damage, whereas concentric exercise of a similar load elicits a minor degree of muscle damage. The cellular events initiating muscle damage are thought to include an increase in cytosolic Ca. It was hypothesized that eccentric muscle activity in humans would lead to a larger degree of cell damage and increased intracellular Ca accumulation in skeletal muscle than concentric activity would. Furthermore, possible differences between men and women in muscle damage were investigated following step exercise. Thirty-three healthy subjects (18 men and 15 women) participated in a 30-minute step exercise protocol involving concentric contractions with 1 leg and eccentric contractions with the other leg. Muscle Ca content, maximal voluntary contraction (MVC), and muscle enzymes in the plasma were measured. In a subgroup of the subjects, T2 relaxation time was measured by magnetic resonance imaging. No significant changes were found in muscle Ca content in vastus lateralis biopsy specimens in women or in men. Following step exercise, MVC decreased in both legs of both genders. The women had a significantly larger strength decrease in the eccentric leg than the men had on postexercise day 2 (p < 0.01). Plasma creatine kinase increased following step exercise, with a sevenfold higher response in women than in men on day 3 (p < 0.001). The women, but not the men, had an increase in T2 relaxation time in the eccentrically working adductor magnus muscle, peaking on day 3 (75%) (p < 0.001). In conclusion, step exercise does not lead to Ca accumulation in the vastus lateralis but does induce muscle damage preferentially in the eccentrically working muscles, considerably more in women than in men. This indicates that gender-specific step training programs may be warranted to avoid excessive muscle damage.


Subject(s)
Calcium/metabolism , Exercise Test , Muscle, Skeletal/injuries , Muscle, Skeletal/metabolism , Adult , Biopsy , Creatine Kinase/blood , Female , Glycogen/metabolism , Humans , Isometric Contraction/physiology , L-Lactate Dehydrogenase/blood , Magnetic Resonance Imaging , Male , Muscle Fatigue/physiology , Muscle Strength/physiology , Muscle, Skeletal/pathology , Sex Factors
4.
Eur J Appl Physiol ; 103(3): 323-32, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18340456

ABSTRACT

The purpose of this study was to compare the responsiveness of changes in Ca(2+)-content and calpain-calpastatin gene expression to concentric and eccentric single-bout and repeated exercise. An exercise group (n = 14) performed two bouts of bench-stepping exercise with 8 weeks between exercise bouts, and was compared to a control-group (n = 6). Muscle strength and soreness and plasma creatine kinase and myoglobin were measured before and during 7 days following exercise bouts. Muscle biopsies were collected from m. vastus lateralis of both legs prior to and at 3, 24 h and 7 days after exercise and quantified for muscle Ca(2+)-content and mRNA levels for calpain isoforms and calpastatin. Exercise reduced muscle strength and increased muscle soreness predominantly in the eccentric leg (P < 0.05). These responses as well as plasma levels of creatine kinase and myoglobin were all attenuated after the repeated eccentric exercise bout (P < 0.05). Total muscle Ca(2+)-content did not differ between interventions. mRNA levels for calpain 2 and calpastatin were upregulated exclusively by eccentric exercise 24 h post-exercise (P < 0.05), with no alteration in expression between bouts. Calpain 1 and calpain 3 mRNA did not change at any specific time point post-exercise for either intervention. Our mRNA results suggest a regulation on the calpain-calpastatin expression response to muscle damaging eccentric exercise, but not concentric exercise. Although a repeated bout effect was demonstrated in terms of muscle function, no immediate support was provided to suggest that regulation of expression of specific system components is involved in the repeated bout adaptation.


Subject(s)
Calcium-Binding Proteins/metabolism , Calpain/metabolism , Exercise , Muscle Contraction , Quadriceps Muscle/metabolism , Adaptation, Physiological , Adult , Calcium/metabolism , Calcium-Binding Proteins/genetics , Calpain/genetics , Creatine Kinase/blood , Humans , Male , Muscle Contraction/genetics , Muscle Proteins/metabolism , Muscle Strength , Myoglobin/blood , Pain/metabolism , Pain Measurement , Quadriceps Muscle/enzymology , Quadriceps Muscle/pathology , RNA, Messenger/metabolism , Time Factors , Up-Regulation
5.
Am J Physiol Regul Integr Comp Physiol ; 292(6): R2249-58, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17332163

ABSTRACT

Prolonged or unaccustomed exercise leads to muscle cell membrane damage, detectable as release of the intracellular enzyme lactic acid dehydrogenase (LDH). This is correlated to excitation-induced influx of Ca2+, but it cannot be excluded that mechanical stress contributes to the damage. We here explore this question using N-benzyl-p-toluene sulfonamide (BTS), which specifically blocks muscle contraction. Extensor digitorum longus muscles were prepared from 4-wk-old rats and mounted on holders for isometric contractions. Muscles were stimulated intermittently at 40 Hz for 15-60 min or exposed to the Ca2+ ionophore A23187. Electrical stimulation increased 45Ca influx 3-5 fold. This was followed by a progressive release of LDH, which was correlated to the influx of Ca2+. BTS (50 microM) caused a 90% inhibition of contractile force but had no effect on the excitation-induced 45Ca influx. After stimulation, ATP and creatine phosphate levels were higher in BTS-treated muscles, most likely due to the cessation of ATP-utilization for cross-bridge cycling, indicating a better energy status of these muscles. No release of LDH was observed in BTS-treated muscles. However, when exposed to anoxia, electrical stimulation caused a marked increase in LDH release that was not suppressed by BTS but associated with a decrease in the content of ATP. Dynamic passive stretching caused no increase in muscle Ca2+ content and only a minor release of LDH, whereas treatment with A23187 markedly increased LDH release both in control and BTS-treated muscles. In conclusion, after isometric contractions, muscle cell membrane damage depends on Ca2+ influx and energy status and not on mechanical stress.


Subject(s)
Calcium/metabolism , Cumulative Trauma Disorders/etiology , Cumulative Trauma Disorders/physiopathology , Electric Stimulation/adverse effects , Isometric Contraction , Muscle, Skeletal/injuries , Muscle, Skeletal/physiopathology , Adenosine Triphosphate/metabolism , Animals , Female , In Vitro Techniques , Male , Rats , Rats, Wistar , Stress, Mechanical
6.
Am J Physiol Regul Integr Comp Physiol ; 290(2): R265-72, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16210418

ABSTRACT

Intensive exercise leads to a loss of force, which may be long lasting and associated with muscle cell damage. To simulate this impairment and to develop means of compensating the loss of force, extensor digitorum longus muscles from 4-wk-old rats were fatigued using intermittent 40-Hz stimulation (10 s on, 30 s off). After stimulation, force recovery, cell membrane leakage, and membrane potential were followed for 240 min. The 30-60 min of stimulation reduced tetanic force to approximately 10% of the prefatigue level, followed by a spontaneous recovery to approximately 20% in 120-240 min. Loss of force was associated with a decrease in K+ content, gain of Na+ and Ca2+ content, leakage of the intracellular enzyme lactic acid dehydrogenase (10-fold increase), and depolarization (13 mV). Stimulation of the Na+-K+ pump with either the beta2-adrenoceptor agonist salbutamol, epinephrine, rat calcitonin gene-related peptide (rCGRP), or dibutyryl cAMP improved force recovery by 40-90%. The beta-blocker propranolol abolished the effect of epinephrine on force recovery but not that of CGRP. Both spontaneous and salbutamol-induced force recovery were prevented by ouabain. The salbutamol-induced force recovery was associated with repolarization of the membrane potential (12 mV) to the level measured in unfatigued muscles. In conclusion, in muscles exposed to fatiguing stimulation leading to a considerable loss of force, cell leakage, and depolarization, stimulation of the Na+-K+ pump induces repolarization and improves force recovery, possibly due to the electrogenic action of the Na+-K+ pump. This mechanism may be important for the restoration of muscle function after intense exercise.


Subject(s)
Adrenergic beta-2 Receptor Agonists , Adrenergic beta-Agonists/pharmacology , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Albuterol/pharmacology , Animals , Calcium/metabolism , Epinephrine/pharmacology , Female , Male , Membrane Potentials/drug effects , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/metabolism , Ouabain/pharmacology , Potassium/metabolism , Propranolol/pharmacology , Rats , Rats, Wistar , Receptors, Adrenergic, beta-2/metabolism , Sodium/metabolism
7.
Exp Physiol ; 90(5): 703-14, 2005 Sep.
Article in English | MEDLINE | ID: mdl-15908508

ABSTRACT

Anoxia can lead to skeletal muscle damage. In this study we have investigated whether an increased influx of Ca2+, which is known to cause damage during electrical stimulation, is a causative factor in anoxia-induced muscle damage. Isolated extensor digitorum longus (EDL) muscles from 4-week-old Wistar rats were mounted at resting length and were either resting or stimulated (30 min, 40 Hz, 10 s on, 30 s off) in the presence of standard oxygenation (95% O2, 5% CO2), anoxia (95% N2, 5% CO2) or varying degrees of reduced oxygenation. At varying extracellular Ca2+ concentrations ([Ca2+]o), 45Ca influx and total cellular Ca2+ content were measured and the release of lactic acid dehydrogenase (LDH) was determined as an indicator of cell membrane leakage. In resting muscles, incubated at 1.3 mM Ca2+, 15-75 min of exposure to anoxia increased 45Ca influx by 46-129% (P<0.001) and Ca2+ content by 20-50% (P<0.001). Mg2+ (11.2 mM) reduced the anoxia-induced increase in 45Ca influx by 43% (P<0.001). In muscles incubated at 20 and 5% O2, 45Ca influx was also stimulated (P<0.001). Increasing [Ca2+]o to 5 mM induced a progressive increase in both 45Ca uptake and LDH release in resting anoxic muscles. When electrical stimulation was applied during anoxia, Ca2+ content and LDH release increased markedly and showed a significant correlation (r2=0.55, P<0.001). In conclusion, anoxia or incubation at 20 or 5% O2 leads to an increased influx of 45Ca. This is associated with a loss of cell membrane integrity, possibly initiated by Ca2+. The loss of cell membrane integrity further increases Ca2+ influx, which may elicit a self-amplifying process of cell membrane leakage.


Subject(s)
Calcium/metabolism , Hypoxia/physiopathology , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Animals , Cell Membrane/drug effects , Cell Membrane/pathology , Electric Stimulation , Female , Hindlimb , Hypoxia/pathology , In Vitro Techniques , L-Lactate Dehydrogenase/metabolism , Male , Oxygen/pharmacology , Rats , Rats, Wistar , Toes
8.
J Physiol ; 559(Pt 1): 271-85, 2004 Aug 15.
Article in English | MEDLINE | ID: mdl-15218060

ABSTRACT

Prolonged or unaccustomed exercise leads to loss of contractility and muscle cell damage. The possible role of an increased uptake of Ca(2+) in this was explored by examining how graded fatiguing stimulation, leading to a graded uptake of Ca(2+), results in progressive loss of force, impairment of force recovery, and loss of cellular integrity. The latter is indicated by increased [(14)C]sucrose space and lactic acid dehydrogenase (LDH) release. Isolated rat extensor digitorum longus (EDL) muscles were allowed to contract isometrically using a fatiguing protocol with intermittent stimulation at 40 Hz. Force declined rapidly, reaching 11% of the initial level after 10 min and stayed low for up to 60 min. During the initial phase (2 min) of stimulation (45)Ca uptake showed a 10-fold increase, followed by a 4- to 5-fold increase during the remaining period of stimulation. As the duration of stimulation increased, the muscles subsequently regained gradually less of their initial force. Following 30 or 60 min of stimulation, resting (45)Ca uptake, [(14)C]sucrose space, and LDH release were increased 4- to 7-fold, 1.4- to 1.7-fold and 3- to 9-fold, respectively (P < 0.001). The contents of Ca(2+) and Na(+) were also increased (P < 0.01), a further indication of loss of cellular integrity. When fatigued at low [Ca(2+)](o) (0.65 mm), force recovery was on average twofold higher than that of muscles fatigued at high [Ca(2+)](o) (2.54 mm). Muscles showing the best force recovery also had a 41% lower total cellular Ca(2+) content (P < 0.01). In conclusion, fatiguing stimulation leads to a progressive functional impairment and loss of plasma membrane integrity which seem to be related to an excitation-induced uptake of Ca(2+). Mechanical strain on the muscle fibres does not seem a likely mechanism since very little force was developed beyond 10 min of stimulation.


Subject(s)
Calcium/metabolism , Cell Membrane/metabolism , Muscle Contraction/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/metabolism , Animals , Female , In Vitro Techniques , Male , Rats , Rats, Wistar
9.
Med Sci Sports Exerc ; 36(5): 821-9, 2004 May.
Article in English | MEDLINE | ID: mdl-15126716

ABSTRACT

PURPOSE: Muscle damage and soreness are well-known adverse effects of running, especially when covering distances in excess of habitual running activity. Loss of Ca homeostasis is hypothesized to initiate the development of exercise-induced muscle damage. We tested the hypothesis that the Ca content of vastus lateralis muscle increases after a 10- or 20-km run and studied the relations between Ca accumulation and running distance, endurance training, and fiber type distribution. METHODS: Twenty-four healthy young men and women were divided into two groups who ran either 10 or 20 km. Muscle biopsies and blood samples were collected before, immediately after, and in the days after the run. RESULTS: : The Ca content in muscle biopsies increased from 0.70 +/- 0.02 to 0.93 +/- 0.04 micromol x g wet weight after the 20-km run (P < 0.001) and was still significantly elevated at 4 and 48 h after the run. In the 10-km runners, however, no significant increase in Ca was found (0.81 +/- 0.03 vs 0.91 +/- 0.06 micromol x g wet weight, P = 0.08). Plasma levels of lactate dehydrogenase and creatine kinase increased after both running distances, the increase being greatest after the 20-km run. Eight of the 10-km runners completed an endurance-training program and subsequently repeated the 10-km run. The response to a new 10-km run with regard to muscle Ca content and parameters of muscle damage was essentially unchanged by training. CONCLUSIONS: The degree of muscle damage depends on running distance, and a significant Ca accumulation in muscle is seen after 20 km. Ten weeks of endurance training does not influence Ca homeostasis and muscle damage after 10-km running.


Subject(s)
Calcium/metabolism , Muscle, Skeletal/injuries , Muscle, Skeletal/metabolism , Running/physiology , Analysis of Variance , Biopsy , Creatine Kinase/blood , Electrolytes/metabolism , Female , Homeostasis , Humans , L-Lactate Dehydrogenase/blood , Linear Models , Male , Muscle Contraction/physiology , Muscle, Skeletal/enzymology , Physical Education and Training
10.
J Appl Physiol (1985) ; 96(3): 1005-10, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14578373

ABSTRACT

The effect of the diving response on alveolar gas exchange was investigated in 15 subjects. During steady-state exercise (80 W) on a cycle ergometer, the subjects performed 40-s apneas in air and 40-s apneas with face immersion in cold (10 degrees C) water. Heart rate decreased and blood pressure increased during apneas, and the responses were augmented by face immersion. Oxygen uptake from the lungs decreased during apnea in air (-22% compared with eupneic control) and was further reduced during apnea with face immersion (-25% compared with eupneic control). The plasma lactate concentration increased from control (11%) after apnea in air and even more after apnea with face immersion (20%), suggesting an increased anaerobic metabolism during apneas. The lung oxygen store was depleted more slowly during apnea with face immersion because of the augmented diving response, probably including a decrease in cardiac output. Venous oxygen stores were probably reduced by the cardiovascular responses. The turnover times of these gas stores would have been prolonged, reducing their effect on the oxygen uptake in the lungs. Thus the human diving response has an oxygen-conserving effect.


Subject(s)
Apnea/metabolism , Diving/physiology , Heart Rate/physiology , Oxygen Consumption/physiology , Physical Exertion/physiology , Adult , Apnea/blood , Exercise Test/statistics & numerical data , Face , Humans , Immersion , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...