Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 83(10): 1677-1692.e8, 2023 05 18.
Article in English | MEDLINE | ID: mdl-37207626

ABSTRACT

PERIOD (PER) and Casein Kinase 1δ regulate circadian rhythms through a phosphoswitch that controls PER stability and repressive activity in the molecular clock. CK1δ phosphorylation of the familial advanced sleep phase (FASP) serine cluster embedded within the Casein Kinase 1 binding domain (CK1BD) of mammalian PER1/2 inhibits its activity on phosphodegrons to stabilize PER and extend circadian period. Here, we show that the phosphorylated FASP region (pFASP) of PER2 directly interacts with and inhibits CK1δ. Co-crystal structures in conjunction with molecular dynamics simulations reveal how pFASP phosphoserines dock into conserved anion binding sites near the active site of CK1δ. Limiting phosphorylation of the FASP serine cluster reduces product inhibition, decreasing PER2 stability and shortening circadian period in human cells. We found that Drosophila PER also regulates CK1δ via feedback inhibition through the phosphorylated PER-Short domain, revealing a conserved mechanism by which PER phosphorylation near the CK1BD regulates CK1 kinase activity.


Subject(s)
Circadian Clocks , Period Circadian Proteins , Animals , Humans , Phosphorylation , Feedback , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Casein Kinase I/genetics , Casein Kinase I/metabolism , Circadian Rhythm/genetics , Drosophila/metabolism , Serine/metabolism , Mammals/metabolism
2.
Nat Struct Mol Biol ; 29(8): 759-766, 2022 08.
Article in English | MEDLINE | ID: mdl-35864165

ABSTRACT

The AAA+ family member KaiC is the central pacemaker for circadian rhythms in the cyanobacterium Synechococcus elongatus. Composed of two hexameric rings of adenosine triphosphatase (ATPase) domains with tightly coupled activities, KaiC undergoes a cycle of autophosphorylation and autodephosphorylation on its C-terminal (CII) domain that restricts binding of clock proteins on its N-terminal (CI) domain to the evening. Here, we use cryogenic-electron microscopy to investigate how daytime and nighttime states of CII regulate KaiB binding on CI. We find that the CII hexamer is destabilized during the day but takes on a rigidified C2-symmetric state at night, concomitant with ring-ring compression. Residues at the CI-CII interface are required for phospho-dependent KaiB association, coupling ATPase activity on CI to cooperative KaiB recruitment. Together, these studies clarify a key step in the regulation of cyanobacterial circadian rhythms by KaiC phosphorylation.


Subject(s)
Circadian Clocks , Synechococcus , Adenosine Triphosphatases/metabolism , Bacterial Proteins/chemistry , CLOCK Proteins/metabolism , Circadian Rhythm , Circadian Rhythm Signaling Peptides and Proteins/genetics , Circadian Rhythm Signaling Peptides and Proteins/metabolism , Phosphorylation , Synechococcus/metabolism
3.
Elife ; 92020 02 11.
Article in English | MEDLINE | ID: mdl-32043967

ABSTRACT

Post-translational control of PERIOD stability by Casein Kinase 1δ and ε (CK1) plays a key regulatory role in metazoan circadian rhythms. Despite the deep evolutionary conservation of CK1 in eukaryotes, little is known about its regulation and the factors that influence substrate selectivity on functionally antagonistic sites in PERIOD that directly control circadian period. Here we describe a molecular switch involving a highly conserved anion binding site in CK1. This switch controls conformation of the kinase activation loop and determines which sites on mammalian PER2 are preferentially phosphorylated, thereby directly regulating PER2 stability. Integrated experimental and computational studies shed light on the allosteric linkage between two anion binding sites that dynamically regulate kinase activity. We show that period-altering kinase mutations from humans to Drosophila differentially modulate this activation loop switch to elicit predictable changes in PER2 stability, providing a foundation to understand and further manipulate CK1 regulation of circadian rhythms.


Subject(s)
Casein Kinase I/metabolism , Circadian Rhythm , Period Circadian Proteins/metabolism , Allosteric Regulation , Animals , Casein Kinase I/genetics , Drosophila , HEK293 Cells , Humans , Molecular Dynamics Simulation , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...