Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 12(11)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-38001817

ABSTRACT

Individuals with psychosocial stress often experience an exaggerated response to air pollutants. Ozone (O3) exposure has been associated with the activation of the neuroendocrine stress-response system. We hypothesized that preexistent mild chronic stress plus social isolation (CS), or social isolation (SI) alone, would exacerbate the acute effects of O3 exposure on the circulating adrenal-derived stress hormones, and the expression of the genes regulating glucocorticoid stress signaling via an altered stress adaptation in a brain-region-specific manner. Male Wistar-Kyoto rats (5 weeks old) were socially isolated, plus were subjected to either CS (noise, confinement, fear, uncomfortable living, hectic activity, and single housing), SI (single housing only, restricted handling and no enrichment) or no stress (NS; double housing, frequent handling and enrichment provided) for 8 weeks. The rats were then exposed to either air or O3 (0.8 ppm for 4 h), and the samples were collected immediately after. The indicators of sympathetic and hypothalamic-pituitary axis (HPA) activation (i.e., epinephrine, corticosterone, and lymphopenia) increased with O3 exposure, but there were no effects from CS or SI, except for the depletion of serum BDNF. CS and SI revealed small changes in brain-region-specific glucocorticoid-signaling-associated markers of gene expression in the air-exposed rats (hypothalamic Nr3c1, Nr3c2 Hsp90aa1, Hspa4 and Cnr1 inhibition in SI; hippocampal HSP90aa1 increase in SI; and inhibition of the bed nucleus of the stria terminalis (BNST) Cnr1 in CS). Gene expression across all brain regions was altered by O3, reflective of glucocorticoid signaling effects, such as Fkbp5 in NS, CS and SI. The SI effects on Fkbp5 were greatest for SI in BNST. O3 increased Cnr2 expression in the hypothalamus and olfactory bulbs of the NS and SI groups. O3, in all stress conditions, generally inhibited the expression of Nr3c1 in all brain regions, Nr3c2 in the hippocampus and hypothalamus and Bdnf in the hippocampus. SI, in general, showed slightly greater O3-induced changes when compared to NS and CS. Serum metabolomics revealed increased sphingomyelins in the air-exposed SI and O3-exposed NS, with underlying SI dampening some of the O3-induced changes. These results suggest a potential link between preexistent SI and acute O3-induced increases in the circulating adrenal-derived stress hormones and brain-region-specific gene expression changes in glucocorticoid signaling, which may partly underlie the stress dynamic in those with long-term SI.

2.
Int J Mol Sci ; 24(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37047376

ABSTRACT

Exposure to a prototypic air pollutant ozone (O3) has been associated with the activation of neuroendocrine stress response along with neural changes in oxidative stress (OS), inflammation, and Alzheimer's disease-like pathologies in susceptible animal models. We hypothesized that neural oxidative and transcriptional changes induced by O3 in stress responsive regions are sex-dependent. Male and female adult Long-Evans rats were exposed to filtered air or O3 for two consecutive days (0.8 ppm, 4 h/day) and brain regions were flash-frozen. Activities of cerebellar OS parameters and mitochondrial complex I, II, and IV enzymes were assessed to confirm prior findings. We assessed transcriptional changes in hypothalamus (HYP) and hippocampus (HIP) for markers of OS, microglial activity and glucocorticoid signaling using qPCR. Although there were no O3 or sex-related differences in the cerebellar activities of OS and mitochondrial enzymes, the levels of protein carbonyls and complex II activities were higher in females regardless of O3. There were no statistical differences in baseline expression of genes related to OS (Cat, Dhcr24, Foxm1, Gpx1, Gss, Nfe2l2, Sod1) except for lower HYP Sod1 expression in air-exposed females than males, and higher HIP Gss expression in O3-exposed females relative to matched males. Microglial marker Aif1 expression was higher in O3-exposed females relative to males; O3 inhibited Itgam only in males. The expression of Bdnf in HIP and HYP was inhibited by O3 in both sexes. Genes related to glucocorticoid signaling (Fkbp4, Fkbp5, Hsp90aa1, Hspa4, nr3c1, nr3c2) showed sex-specific effects due to O3 exposure. Baseline expression of HIP Fkbp4 was higher in females relative to males. O3 inhibited Nr3c1 in female HIP and male HYP, but Nr3c2 was inhibited in male HYP. Fkbp4 expression was higher in O3-exposed females when compared to matched males, whereas Fkbp5 was expressed at higher levels in both brain regions of males and females. These results indicate that sex-specific brain region responses to O3 might, in part, be caused by OS and regulation of glucocorticoid signaling.


Subject(s)
Ozone , Rats , Male , Female , Animals , Ozone/toxicity , Glucocorticoids/pharmacology , Superoxide Dismutase-1 , Rats, Long-Evans , Oxidative Stress , Hippocampus , Hypothalamus
3.
Toxicol Appl Pharmacol ; 457: 116295, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36341779

ABSTRACT

Psychosocially-stressed individuals might have exacerbated responses to air pollution exposure. Acute ozone exposure activates the neuroendocrine stress response leading to systemic metabolic and lung inflammatory changes. We hypothesized chronic mild stress (CS) and/or social isolation (SI) would cause neuroendocrine, inflammatory, and metabolic phenotypes that would be exacerbated by an acute ozone exposure. Male 5-week-old Wistar-Kyoto rats were randomly assigned into 3 groups: no stress (NS) (pair-housed, regular-handling); SI (single-housed, minimal-handling); CS (single-housed, subjected to mild unpredicted-randomized stressors [restraint-1 h, tilted cage-1 h, shaking-1 h, intermittent noise-6 h, and predator odor-1 h], 1-stressor/day*5-days/week*8-weeks. All animals then 13-week-old were subsequently exposed to filtered-air or ozone (0.8-ppm) for 4 h and immediately necropsied. CS, but not SI animals had increased adrenal weights. However, relative to NS, both CS and SI had lower circulating luteinizing hormone, prolactin, and follicle-stimulating hormone regardless of exposure (SI > CS), and only CS demonstrated lower thyroid-stimulating hormone levels. SI caused more severe systemic inflammation than CS, as evidenced by higher circulating cytokines and cholesterol. Ozone exposure increased urine corticosterone and catecholamine metabolites with no significant stressor effect. Ozone-induced lung injury, and increases in lavage-fluid neutrophils and IL-6, were exacerbated by SI. Ozone severely lowered circulating thyroid-stimulating hormone, prolactin, and luteinizing hormone in all groups and exacerbated systemic inflammation in SI. Ozone-induced increases in serum glucose, leptin, and triglycerides were consistent across stressors; however, increases in cholesterol were exacerbated by SI. Collectively, psychosocial stressors, especially SI, affected the neuroendocrine system and induced adverse metabolic and inflammatory effects that were exacerbated by ozone exposure.

4.
Mol Metab ; 42: 101094, 2020 12.
Article in English | MEDLINE | ID: mdl-33031959

ABSTRACT

OBJECTIVE: The importance of the placenta in mediating the pre- and post-natal consequences of fetal growth restriction has been increasingly recognized. However, the influence of placental sexual dimorphism on driving these outcomes has received little attention. The purpose of this study was to characterize how sex contributes to the relationship between placental metabolism and fetal programming utilizing a novel rodent model of growth restriction. METHODS: Fetal growth restriction was induced by maternal inhalation of 0.8 ppm ozone (4 h/day) during implantation receptivity (gestation days [GDs] 5 and 6) in Long-Evans rats. Control rats were exposed to filtered air. At GD 21, placental and fetal tissues were obtained for metabolic and genomic assessments. RESULTS: Growth-restricted male placentae exhibited increased mitochondrial biogenesis, increased oxygen consumption, and reduced nutrient storage. Male growth-restricted fetuses also had evidence of reduced adiposity and downregulation of hepatic metabolic signaling. In contrast, placentae from growth-restricted females had elevated markers of autophagy accompanied by an observed protection against hepatic metabolic perturbations. Despite this, growth restriction in females induced a greater number of hypothalamic gene and pathway alterations compared to growth-restricted males. CONCLUSIONS: Increases in mitochondrial metabolism in growth-restricted male placentae likely initiates a sequela of adaptations that promote poor nutrient availability and adiposity. Divergently, the female placenta expresses protective mechanisms that may serve to increase nutrient availability to support fetal metabolic development. Collectively, this work emphasizes the importance of sex in mediating alterations in placental metabolism and fetal programming.


Subject(s)
Fetal Growth Retardation/metabolism , Fetus/metabolism , Placenta/metabolism , Adiposity , Animals , Female , Fetal Development , Fetal Growth Retardation/physiopathology , Male , Mitochondria/metabolism , Ozone/adverse effects , Ozone/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Rats , Rats, Long-Evans , Sex Characteristics , Sex Factors
5.
Neurotoxicol Teratol ; 54: 78-88, 2016.
Article in English | MEDLINE | ID: mdl-26721698

ABSTRACT

The use of gasolines blended with a range of ethanol concentrations may result in inhalation of vapors containing a variable combination of ethanol with other volatile gasoline constituents. The possibility of exposure and potential interactions between vapor constituents suggests the need to evaluate the possible risks of this complex mixture. Previously we evaluated the effects of developmental exposure to ethanol vapors on neurophysiological measures of sensory function as a component of a larger project evaluating developmental ethanol toxicity. Here we report an evaluation using the same battery of sensory function testing in offspring of pregnant dams exposed during gestation to condensed vapors of gasoline (E0), gasoline blended with 15% ethanol (E15) or gasoline blended with 85% ethanol (E85). Pregnant Long-Evans rats were exposed to target concentrations 0, 3000, 6000, or 9000 ppm total hydrocarbon vapors for 6.5h/day over GD9 - GD20. Sensory evaluations of male offspring began as adults. The electrophysiological testing battery included tests of: peripheral nerve (compound action potentials, nerve conduction velocity [NCV]), somatosensory (cortical and cerebellar evoked potentials), auditory (brainstem auditory evoked responses), and visual functions. Visual function assessment included pattern elicited visual evoked potentials (VEP), VEP contrast sensitivity, dark-adapted (scotopic) electroretinograms (ERGs), light-adapted (photopic) ERGs, and green flicker ERGs. The results included sporadic statistically significant effects, but the observations were not consistently concentration-related and appeared to be statistical Type 1 errors related to multiple dependent measures evaluated. The exposure concentrations were much higher than can be reasonably expected from typical exposures to the general population during refueling or other common exposure situations. Overall the results indicate that gestational exposure of male rats to ethanol/gasoline vapor combinations did not cause detectable changes in peripheral nerve, somatosensory, auditory, or visual function when the offspring were assessed as adults.


Subject(s)
Air Pollutants/toxicity , Evoked Potentials/drug effects , Gasoline/toxicity , Peripheral Nerves/drug effects , Prenatal Exposure Delayed Effects/physiopathology , Acoustic Stimulation , Action Potentials/drug effects , Administration, Inhalation , Analysis of Variance , Animals , Dose-Response Relationship, Drug , Electroretinography , Female , Male , Neural Conduction/drug effects , Neural Conduction/physiology , Peripheral Nerves/physiology , Photic Stimulation , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Rats , Rats, Long-Evans
6.
Environ Int ; 78: 16-23, 2015 May.
Article in English | MEDLINE | ID: mdl-25687022

ABSTRACT

Fipronil is a phenylpyrazole insecticide commonly used in residential and agricultural applications. To understand more about the potential risks for human exposure associated with fipronil, urine and serum from dosed Long Evans adult rats (5 and 10mg/kg bw) were analyzed to identify metabolites as potential biomarkers for use in human biomonitoring studies. Urine from treated rats was found to contain seven unique metabolites, two of which had not been previously reported-M4 and M7 which were putatively identified as a nitroso compound and an imine, respectively. Fipronil sulfone was confirmed to be the primary metabolite in rat serum. The fipronil metabolites identified in the respective matrices were then evaluated in matched human urine (n=84) and serum (n=96) samples from volunteers with no known pesticide exposures. Although no fipronil or metabolites were detected in human urine, fipronil sulfone was present in the serum of approximately 25% of the individuals at concentrations ranging from 0.1 to 4ng/mL. These results indicate that many fipronil metabolites are produced following exposures in rats and that fipronil sulfone is a useful biomarker in human serum. Furthermore, human exposure to fipronil may occur regularly and require more extensive characterization.


Subject(s)
Mass Spectrometry/methods , Pesticides , Pyrazoles , Adult , Aged , Animals , Biomarkers/blood , Biomarkers/urine , Environmental Exposure/analysis , Environmental Monitoring , Female , Housing , Humans , Male , Middle Aged , Models, Animal , Pesticides/blood , Pesticides/urine , Pyrazoles/blood , Pyrazoles/urine , Rats , Rats, Long-Evans , Young Adult
7.
Toxicol Appl Pharmacol ; 282(2): 184-94, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25481984

ABSTRACT

The electroencephalogram (EEG) is an apical measure, capable of detecting changes in brain neuronal activity produced by internal or external stimuli. We assessed whether pesticides with different modes of action produced different changes in the EEG of adult male Long-Evans rats. The EEG was recorded using two montages (visual cortex referenced to the cerebellum and to the frontal cortex) in unrestrained rats at the time of peak behavioral effects. Pesticides included: permethrin and deltamethrin (Type I and Type II pyrethroids; 2 h), fipronil (single and repeated doses; phenylpyrazole; 6 h), imidacloprid (neonicotinoid; 2 h), carbaryl (carbamate; 0.5 h), and triadimefon (triazole; 1 h), using dosages that produced approximately an ED30 or an ED50-ED80 change in motor activity. Permethrin (43, 100 mg/kg) increased amplitudes or areas (delta, alpha, or gamma bands) in the EEG. Deltamethrin (2.5, 5.5 mg/kg) reduced the amplitudes or areas of the delta, theta, alpha, beta, and gamma bands, but the changes were not dose-related. A single treatment with fipronil (25, 50 mg/kg, but not 5, 10 mg/kg) decreased gamma band area. Additional changes in the delta, theta, and gamma bands were observed when fipronil (5, 10 mg/kg) was administered for 14 days. Imidacloprid (50, 100 mg/kg) did not alter the EEG. Carbaryl (10, 50 mg/kg) decreased theta area, and decreased delta and increased beta frequency. Triadimefon (75, 150 mg/kg) produced minimal changes in the EEG. The results show that the EEG is affected differently by approximately equipotent doses of pesticides with different modes of action.


Subject(s)
Central Nervous System/drug effects , Electroencephalography/drug effects , Pesticides/toxicity , Animals , Body Temperature/drug effects , Cholinesterase Inhibitors/toxicity , Cholinesterases/metabolism , Dose-Response Relationship, Drug , Fungicides, Industrial/toxicity , Insecticides/toxicity , Male , Rats , Rats, Long-Evans , Visual Cortex/drug effects
8.
Toxicol Appl Pharmacol ; 282(2): 161-74, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25497286

ABSTRACT

There is increasing emphasis on the use of biomarkers of adverse outcomes in safety assessment and translational research. We evaluated serum biomarkers and targeted metabolite profiles after exposure to pesticides (permethrin, deltamethrin, imidacloprid, carbaryl, triadimefon, fipronil) with different neurotoxic actions. Adult male Long-Evans rats were evaluated after single exposure to vehicle or one of two doses of each pesticide at the time of peak effect. The doses were selected to produce similar magnitude of behavioral effects across chemicals. Serum or plasma was analyzed using commercial cytokine/protein panels and targeted metabolomics. Additional studies of fipronil used lower doses (lacking behavioral effects), singly or for 14 days, and included additional markers of exposure and biological activity. Biomarker profiles varied in the number of altered analytes and patterns of change across pesticide classes, and discriminant analysis could separate treatment groups from control. Low doses of fipronil produced greater effects when given for 14 days compared to a single dose. Changes in thyroid hormones and relative amounts of fipronil and its sulfone metabolite also differed between the dosing regimens. Most cytokine changes reflected alterations in inflammatory responses, hormone levels, and products of phospholipid, fatty acid, and amino acid metabolism. These findings demonstrate distinct blood-based analyte profiles across pesticide classes, dose levels, and exposure duration. These results show promise for detailed analyses of these biomarkers and their linkages to biological pathways.


Subject(s)
Biomarkers/blood , Pesticides/chemistry , Pesticides/toxicity , Animals , Chemokines/blood , Dose-Response Relationship, Drug , Hormones/blood , Insecticides/toxicity , Male , Metabolomics , Pyrazoles/toxicity , Rats , Rats, Long-Evans
SELECTION OF CITATIONS
SEARCH DETAIL
...