Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 95(3)2021 01 13.
Article in English | MEDLINE | ID: mdl-33148797

ABSTRACT

Given the projected increase in multidrug-resistant HIV-1, there is an urgent need for development of antiretrovirals that act on virus life cycle stages not targeted by drugs currently in use. Host-targeting compounds are of particular interest because they can offer a high barrier to resistance. Here, we report identification of two related small molecules that inhibit HIV-1 late events, a part of the HIV-1 life cycle for which potent and specific inhibitors are lacking. This chemotype was discovered using cell-free protein synthesis and assembly systems that recapitulate intracellular host-catalyzed viral capsid assembly pathways. These compounds inhibit replication of HIV-1 in human T cell lines and peripheral blood mononuclear cells, and are effective against a primary isolate. They reduce virus production, likely by inhibiting a posttranslational step in HIV-1 Gag assembly. Notably, the compound colocalizes with HIV-1 Gag in situ; however, unexpectedly, selection experiments failed to identify compound-specific resistance mutations in gag or pol, even though known resistance mutations developed upon parallel nelfinavir selection. Thus, we hypothesized that instead of binding to Gag directly, these compounds localize to assembly intermediates, the intracellular multiprotein complexes containing Gag and host factors that form during immature HIV-1 capsid assembly. Indeed, imaging of infected cells shows compound colocalized with two host enzymes found in assembly intermediates, ABCE1 and DDX6, but not two host proteins found in other complexes. While the exact target and mechanism of action of this chemotype remain to be determined, our findings suggest that these compounds represent first-in-class, host-targeting inhibitors of intracellular events in HIV-1 assembly.IMPORTANCE The success of antiretroviral treatment for HIV-1 is at risk of being undermined by the growing problem of drug resistance. Thus, there is a need to identify antiretrovirals that act on viral life cycle stages not targeted by drugs in use, such as the events of HIV-1 Gag assembly. To address this gap, we developed a compound screen that recapitulates the intracellular events of HIV-1 assembly, including virus-host interactions that promote assembly. This effort led to the identification of a new chemotype that inhibits HIV-1 replication at nanomolar concentrations, likely by acting on assembly. This compound colocalized with Gag and two host enzymes that facilitate capsid assembly. However, resistance selection did not result in compound-specific mutations in gag, suggesting that the chemotype does not directly target Gag. We hypothesize that this chemotype represents a first-in-class inhibitor of virus production that acts by targeting a virus-host complex important for HIV-1 Gag assembly.


Subject(s)
Anti-Retroviral Agents/pharmacology , HIV Infections/drug therapy , HIV-1/drug effects , Leukocytes, Mononuclear/drug effects , Small Molecule Libraries/pharmacology , Virus Assembly/drug effects , ATP-Binding Cassette Transporters/metabolism , DEAD-box RNA Helicases/metabolism , HIV Infections/pathology , HIV Infections/virology , Humans , Leukocytes, Mononuclear/virology , Proto-Oncogene Proteins/metabolism , gag Gene Products, Human Immunodeficiency Virus/metabolism
2.
Biol Direct ; 11: 25, 2016 05 14.
Article in English | MEDLINE | ID: mdl-27179769

ABSTRACT

BACKGROUND: Viral capsid assembly involves the oligomerization of the capsid nucleoprotein (NP), which is an essential step in viral replication and may represent a potential antiviral target. An in vitro transcription-translation reaction using a wheat germ (WG) extract in combination with a sandwich ELISA assay has recently been used to identify small molecules with antiviral activity against the rabies virus. RESULTS: Here, we examined the application of this system to viruses with capsids with a different structure, such as the Rift Valley fever virus (RVFV), the etiological agent of a severe emerging infectious disease. The biochemical and immunological characterization of the in vitro-generated RVFV NP assembly products enabled the distinction between intermediately and highly ordered capsid structures. This distinction was used to establish a screening method for the identification of potential antiviral drugs for RVFV countermeasures. CONCLUSIONS: These results indicated that this unique analytical system, which combines nucleoprotein oligomerization with the specific immune recognition of a highly ordered capsid structure, can be extended to various viral families and used both to study the early stages of NP assembly and to assist in the identification of potential antiviral drugs in a cost-efficient manner. REVIEWERS: Reviewed by Jeffry Skolnick and Noah Isakov. For the full reviews please go to the Reviewers' comments section.


Subject(s)
Antiviral Agents/analysis , Capsid/physiology , Drug Discovery/methods , Drug Evaluation, Preclinical , Rift Valley fever virus/physiology , Cell-Free System , Nucleoproteins/chemistry
3.
Bioorg Med Chem Lett ; 18(14): 3895-8, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18590959

ABSTRACT

The synthesis and biological evaluation of a series of aryl diamines as inhibitors of LTA(4)-h inhibitors are described. The optimization which led to the identification of the optimal para-substitution on the diphenyl ether moiety and diamine spacer is discussed. The resulting compounds such as 3l have excellent enzyme and cellular potency as well as desirable pharmacokinetic properties.


Subject(s)
Chemistry, Pharmaceutical/methods , Diamines/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Epoxide Hydrolases/antagonists & inhibitors , Administration, Oral , Animals , Anti-Inflammatory Agents/pharmacology , Biological Availability , Diamines/chemistry , Dogs , Drug Design , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , Kinetics , Models, Chemical , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...